1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 1 TRƯỜNG ĐIỆN TỪ

16 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 217,5 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 1.1 Vector Algebra 1.1-3 (1) Vectors (A) vs Magnitude and direction Ex: Velocity, Force Scalars (A) Magnitude only Ex: Mass, Charge (2) Unit Vectors have magnitude unity denoted by symbol a with subscript A A1a1  A2 a  A3a aA   A A12  A22  A32 Useful for expressing vectors in terms of their components 1.1-4 (3) Dot Product is a scalar A A  A • B = AB cos  B B Useful for finding angle between two vectors A • B cos   AB A A1a1  A2 a  A3 a B B1a1  B2 a  B3a A1 B1  A2 B2  A3 B3  A1  A22  A32 B12  B22  B32 1.1-5 (4) Cross Product is a vector B A A  B = AB sin  an right hand screw A  B an is perpendicular to both A and B Useful for finding unit vector perpendicular to two vectors A B A B an   AB sin  A B 1.1-6 where a1 A B  A1 B1 a2 A2 B2 a3 A3 B3 (5) Triple Cross Product A (B C) is a vector A (B C) B (C A) C (A B) in general 1.1-7 (6) Scalar Triple Product A • B C B • C A C • A B A1 A2 A3  B1 B2 B3 C1 C2 C3 is a scalar 1.1-8 Volume of the parallelepiped  Area of base  Height  A × B   C a n   A × B  C C A × B A B ×C A×B A×B an C B A 1.1-9 D1.2 A = 3a1 + 2a2 + a3 B = a1 + a2 – a3 C = a1 + 2a2 + 3a3 (a) A + B – 4C = (3 + – 4)a1 + (2 + – 8)a2 + (1 – – 12)a3 = – 5a2 – 12a3 A  B – 4C  25  144 13 1.1-10 (b) A + 2B – C = (3 + – 1)a1 + (2 + – 2)a2 + (1 – + 3)a3 = 4a1 + 2a2 – 4a3 Unit Vector 4a1  2a – 4a = 4a1  2a – 4a = (2a1  a – 2a ) 1.1-11 (c) A • C = 1 +  +  = 10 a1 a (d) B C  1 a3 –1 = (3  2)a1  (–1 – 3)a  (2 – 1)a = 5a1 – 4a2 + a3 1.1-12 (e) A • B C  1 –1 = 15 – + = Same as A • (B C) = (3a1 + 2a2 + a3) • (5a1 – 4a2 + a3) = 5 +  (–4) + 1 = 15 – + = 1.1-13 P1.5 D A E B C Common Point D= B–A A + D = B) ( E= C–B B + E = C) ( D and E lie along a straight line 1.1-14  D× E 0  B  A  ×  C  B  0 B × C  A × C  B × B  A × B 0 A × B + B ×C + C× A = What is the geometric interpretation of this result? 1.1-15 Another Example Given a1 × A  a  2a3 a × A a1  2a3 (1) (2) Find A A =C   a  2a3  ×  a1  2a3  a1 a a3 C  C  2a1  2a  a3  2 1.1-16 To find C, use (1) or (2) a1 C  2a1  2a2  a3   a2  2a3 C  2a3  a2   a2  2a3 C 1  A  2a1  2a2  a3 

Ngày đăng: 12/04/2023, 21:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN