1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Taranath b s , tall building design steel, concrete, and composite systems, 2016 compressed

933 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

TALL BUILDING DESIGN Steel, Concrete, and Composite Systems Bungale S Taranath, Ph.D., P.E., S.E TALL BUILDING DESIGN Steel, Concrete, and Composite Systems Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S Government works Printed on acid-free paper Version Date: 20160610 International Standard Book Number-13: 978-1-4665-5620-1 (Hardback) This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe Library of Congress Cataloging‑in‑Publication Data Taranath, Bungale S Tall building design : steel, concrete, and composite systems / Bungale S Taranath pages cm Includes bibliographical references and index ISBN 978-1-4665-5620-1 Building, Iron and steel Concrete construction Composite construction Tall buildings Design and construction I Title TH1611.T373 2015 720’.483 dc23 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com 2013047690 This book is dedicated to my wife, Saroja My dearest and best friend, whose considerable expertise and interest in all aspects of life has influenced my entire existence including my book-writing avocation Contents Preface xxiii Acknowledgments xxix Special.Acknowledgment xxxi Author xxxiii Chapter Loads.on.Building.Structures Preview Dead.Loads .2 Occupancy.Loads.on.Buildings Snow.Loads.on.Buildings 1.1 Dead.Loads .3 1.2 Live.Loads 1.2.1 Live.Load.Reduction 10 1.3 Construction.Loads 11 1.4 Lateral.Soil.Load 14 1.5 Snow,.Rain,.and.Ice.Loads 15 1.6 Thermal.and.Settlement.Loads 16 1.7 Self-Straining.Forces 18 1.8 Dynamic.Loads 18 1.9 Abnormal.Loads 19 1.9.1 Explosion.Effects 19 1.9.2 Floods 20 1.9.3 Vehicle.Impact.Loads 20 1.10 .Classification.of.Buildings,.Risk.Categories,.and.Importance.Factors 20 Chapter Wind.Loads 23 Preview 23 2.1 Description.of.Wind.Forces 23 2.2 Types.of.Wind.Storms 31 2.2.1 Straight-Line.Wind 31 2.2.2 Down-Slope.Wind 31 2.2.3 Downburst 31 2.2.4 Northeastern.Winds 33 2.2.5 Thunderstorm 33 2.2.6 Hurricane 33 2.2.7 Tornado 34 2.2.8 Statistical.Likelihood.of.Natural.Hazards 36 2.2.9 Probabilistic.Approach.in.Wind.Engineering 39 2.3 Wind/Building.Interactions 40 2.3.1 Exposure.Categories 40 2.3.2 Basic.Wind.Speed .40 2.3.3 Topography 41 vii viii Contents 2.3.4 2.3.5 2.3.6 2.3.7 2.4 2.5 2.6 Chapter Building.Height 41 Internal.Pressure 42 Aerodynamic.Pressure 42 Probability.of.Occurrence 43 2.3.7.1 Routine.Winds 44 2.3.7.2 Stronger.Winds 44 2.3.7.3 Design.Level.Winds 44 2.3.7.4 Tornadoes 45 Behavior.of.Tall.Buildings.Subjected.to.Wind 45 2.4.1 Properties.of.the.Mean.Wind.Loads 47 2.4.1.1 Variation.of.Wind.Velocity.with.Height 48 2.4.1.2 Wind.Turbulence 49 2.4.2 Action.of.Wind.on.Tall.Buildings 50 2.4.3 Dynamic.Action.of.Wind 51 2.4.4 Buffeting.due.to.Vortex.Shedding 51 2.4.5 Aerodynamic.Damping 55 2.4.6 Design.Criteria.for.Wind 56 2.4.7 Building.Sway 57 Scope,.Effectiveness,.and.Limitations.of.Building.Codes 58 2.5.1 Scope 58 2.5.2 Effectiveness 59 2.5.3 Limitations 59 ASCE.7-10.Wind.Load.Provisions,.Overview 59 2.6.1 Design.Wind.Loads.for.Main.Wind-Force-Resisting.Systems 59 2.6.2 Design.Wind.Pressures.for.Components.and.Cladding 62 2.6.2.1 Distribution.of.Pressures.and.Suctions 64 2.6.2.2 Local.Cladding.Loads.and.Overall.Design.Loads 66 2.6.3 Comments.on.ASCE.7-10.Wind.Provisions 68 Earthquake.Effects.on.Buildings 69 Preview 69 3.1 Inertial.Forces.and.Acceleration 72 3.2 Duration,.Velocity,.and.Displacement 74 3.3 Acceleration.Amplification.due.to.Soft.Soil 74 3.4 Natural.Periods 75 3.5 Building.Resonance 76 3.6 Site.Response.Spectrum 77 3.7 Damping 79 3.8 Ductility 80 3.9 Earthquakes.and.Other.Geologic.Hazards .80 3.10 Earthquake.Measurements 81 3.11 Determination.of.Local.Earthquake.Hazards 82 3.11.1 Probabilistic.Seismic.Hazard.Analysis .84 3.11.2 Range.of.Earthquake.Performance.Criteria 86 3.12 Nonstructural.Components 86 3.12.1 Response.of.Elements.Attached.to.Buildings 88 3.13 Seismic.Analysis.Procedures 88 3.13.1 Equivalent.Lateral.Force.Procedure 88 3.13.2 Linear.Dynamic.Analysis 89 Contents ix 3.14 System.Selection 89 3.14.1 Elastic.Behavior 89 3.14.2 Postelastic.Behavior 89 3.14.3 Cyclic.Behavior 90 3.15 Seismic.Issues.due.to.Configuration.Irregularities 91 3.15.1 Vertical.Lateral-Load-Resisting.Systems 92 3.15.1.1 Shear.Walls .92 3.15.1.2 Braced.Frames 93 3.15.1.3 Moment-Resistant.Frames 93 3.15.2 Diaphragms 95 3.15.2.1 Collectors 96 3.15.2.2 Role.of.Diaphragms 97 3.15.2.3 Types.of.Diaphragms 97 3.15.2.4 Diaphragm.Design.Procedures 99 3.15.2.5 Shear.Transfer.from.Diaphragm.to.VLLRS .99 3.15.2.6 Modeling.of.Rigid.Diaphragms 103 3.15.3 Optimizing.Structural.Configuration 105 3.15.4 Effects.of.Configuration.Irregularity 109 3.15.4.1 Stress.Concentrations 109 3.15.4.2 Torsion 109 3.15.5 Configuration.Irregularities.in.Seismic.Standards 110 3.15.6 Four.Serious.Configuration.Conditions 111 3.15.6.1 Soft.and.Weak.Stories 112 3.15.6.2 Discontinuous.Shear.Walls 113 3.15.6.3 Variations.in.Perimeter.Strength.and.Stiffness 114 3.15.6.4 Reentrant.Corners 116 3.15.7 Other.Seismic.Issues 118 3.15.7.1 P-Delta.Effect 118 3.15.7.2 Strong.Beam,.Weak.Column 120 3.15.7.3 Setbacks.and.Planes.of.Weakness 120 3.15.8 Earthquake.Collapse.Patterns 120 3.15.8.1 Unintended.Addition.of.Stiffness 121 3.15.8.2 Inadequate.Beam–Column.Joint.Strength 122 3.15.8.3 Tension/Compression.Failures 122 3.15.8.4 Wall-to-Roof.Connection.Failure 123 3.15.8.5 Local.Column.Failure 123 3.15.8.6 Heavy.Floor.Collapse 123 3.15.8.7 Torsion.Effects 124 3.15.8.8 Soft-Story.Collapse 124 3.15.8.9 Midstory.Collapse 124 3.15.8.10 Pounding 124 3.15.9 Conclusions 125 3.16 Structural.Dynamic 126 3.16.1 Dynamic.Loads 127 3.16.2 Concept.of.Dynamic.Load.Factor 128 3.16.3 Difference.between.Static.and.Dynamic.Analyses 130 3.16.4 Dynamic.Effects.due.to.Wind.Gusts 133 3.16.5 Characteristics.of.a.Dynamic.Problem 134 3.16.6 Multiple.Strategy.of.Seismic.Design 136 3.16.7 Example.of.Portal.Frame.Subject.to.Ground.Motions 137 884 seismic.design.requirements,.building.structures,.295 accidental.torsion,.317–318 analysis.procedure,.309–310 base.shear,.312–313 building.separation,.333–334 Category.A.buildings,.336–337 Category.B.buildings,.337–338 Category.C.buildings,.338–339 Category.D.buildings,.339–341 Category.E.buildings,.341 Category.F.buildings,.341 connection.design,.299 continuous.load.path.and.interconnection, 299–302 deformation.compatibility,.334–335 deformation.limit,.299 direction.of.loading,.309 discontinuous.walls/frames,.elements.supporting, 304–305 drift.and.deformation,.330–333 dual.system,.302 effective.seismic.weight,.310 ELF.procedure,.311 foundation.modeling.criteria,.310 horizontal.distribution.of.forces,.316–317 horizontal.shear.distribution,.324 hysteretic.behavior,.299 inherent.torsion,.317–318 interaction.effects,.311 load.effect/combinations,.308–309 member.design,.299 modal.response.parameters,.323–324 modal.superposition.method,.320–321 number.of.modes,.323 P-delta.effects,.319–320,.324–327 period.determination,.313–316 period.for.computing.drift,.319 plan.(horizontal).irregularity,.302–304 redundancy,.305–308 requirements,.296–299 scaling.design.values,.combined.response,.324 seismic.loads,.vertical.ground.motions,.316 soil–structure.interaction,.322–323 story.drifts.determination,.318–319 structural.modeling,.310–311 vertical.distribution,.seismic.force,.314–315 vertical.irregularity,.303–304 ASCE.24-05.Flood Resistant Design and Construction,.226 ASD,.see.Allowable.stress.design ASTM.specification bar,.803 plates,.803 slip-critical.bolted.connections,.814 steel.buildings,.801 structural.fastener.types,.805–806 structural.shape,.802–803 Atmospheric.boundary.layer,.48 AWS,.see.American.Welding.Society b Banded.tendon.distribution,.725 Bank.of.China.Tower,.Hong.Kong,.711–712 Index Base.shear design,.284–286 seismic,.312–313 Basket-weave.system,.724–725 Beam-column.design,.859 Beams,.717–719;.see also.Composite.beams Beam-to-shear.wall.connection,.867–873 Bearing bolts,.812–814 friction.pendulum,.663–664 HDR,.647 lead-rubber,.647–648 non-load-bearing.walls,.544–545 single.pendulum,.662 tension-capable,.664 triple.pendulum,.662–663 Bending.theory,.742 Bernoulli.hypothesis,.753 Bimoment,.731,.742 thin-walled.beam.theory,.754 wide.flange.columns,.741 Blast-resistant.design analysis.procedure,.668–669 collateral.damage,.671 conventional.structures,.671 exterior.explosion,.666–667 interior.explosion,.667 load.criteria,.668 progressive.collapse design.alternation,.673 guidelines,.673–674 seismic.and,.669–670 selection,.670–672 summary,.672–673 BLWT,.see.Boundary-layer.wind.tunnel Bolts bearing,.812–814 double.shear,.812 failure.modes,.813 fully.tensioned.installation,.814–815 load.transfer.mechanisms,.810 shear,.811–812,.815 slip-critical,.813–814 snug-tight.installation,.814–815 tension,.811,.815 Boundary-layer.wind.tunnel.(BLWT),.259 Braced.frames,.371–372 Bracketed.duration,.74 Brittle.fracture characteristics,.800 definition,.799 historical.review,.799–800 Buckling.of.building circular.building,.690–691 vertical.cantilever,.689 Building.appurtenances,.240–242 Building.codes addressing.wind.loads.and.floods, 226–227 effectiveness,.59 limitations,.59 prescriptive.approaches,.344 scopes,.58 seismic,.86 885 Index Building.deformations elemental.deformations,.498 global.deformations,.497–498 interstructural.deformations,.498 Building.drift,.623 Building.enclosure,.226 Building.envelope,.226 Building.height.on.period,.effect.of,.75 Building.motion perception,.629 tall,.627–628 Building.performance.levels PBD collapse.prevention.level,.355 immediate.occupancy.level,.354 LATBSDC.(2008),.355–356 life-safety.level,.354–355 operational.level,.354 PBSD Alternate Design Criteria.(2008.LATBSDC),.355 collapse.prevention.level/near.collapse.level,.355 immediate.occupancy.level,.354 life-safety.level,.354–355 operational.level,.354 Building.periods,.272–273 C Caissons,.692 Calibrated-wrench.method,.815 California’s.Riley.Act,.312 Camber,.625 Cantilever.column,.solid.section,.753 Cantilever.deflection,.386–387 Cast-in-place.concrete.diaphragm,.103 Cathode-ray.tube.(CRT),.797 CBF,.see.Concentric.braced.frame Center.of.gravity columns,.381 inertial.loading,.735 loaded.crane,.12 location,.745 warping.theory,.743 Circular.shaft torsional.shear.stresses,.736 twisting,.736 Citicorp.Tower,.New.York,.634–636 CJP.groove.weld,.see.Complete-joint-penetration.(CJP) groove.weld Cladding,.components.and,.242–246,.259 Code of Federal Regulations.(CFR),.226 Coefficient.of.expansion,.structural.steel,.807–810 Collapse.prevention,.86 Collateral.damage,.671 Collector.reinforcement,.328–329 Columbia.Seafirst.Center,.631 Column.strip,.724–725 Complete-joint-penetration.(CJP).groove.weld,.795–796,.798 Complete.quadratic.combination.(CQC),.152 Components.and.cladding.(C&C),.228,.242–246,.259 Composite.beams AISC design.criteria,.828–830 requirements,.830–832 concentrically.braced.frames,.864–865 continuous,.846 deflection.considerations,.836–837 design.examples,.839–841 design.outline,.837–839 eccentrically.braced.frames,.866 effective.width,.833 flat.soffit.reinforced.concrete.slab,.845 flexural.strength negative,.834 positive,.834 fully.encased.steel.beams,.826 girder.design,.841–842 nonprismatic,.846–847 precast-concrete.plank,.845,.847 shear.connector arrangements,.832 load.transfer,.834–835 placement.and.spacing,.836 strength,.834–835 steel.deck,.860 ribs.parallel,.829–830 ribs.perpendicular,.828–829 stud.shear.connector,.827 types,.826 unshored.construction,.826 Composite.buildings,.817 ANSI/SDI accessories,.824 accessory.attachment,.825 cantilever.loads,.824 concentrated.loads,.823 concrete.strength,.823 deck.deflection,.822 design,.822 diaphragm.shear.capacity,.823 execution,.824–825 finish,.822 fire.resistance,.822 installation/anchorage,.825 live-load.deflection,.823 minimum.bearing,.823 products,.822 reinforcement,.823–824 suspended.loads,.823 composite.beams.(see.Composite.beams) composite.columns advantages,.850 AISC.specification,.856,.858 behavior,.850–851 building.industry,.850 combined.axial.force.and.flexure,.858 encased.(see.Encased.composite.column) examples,.850 filled.(see.Filled.composite.columns) interaction.diagram,.859 nominal.strength,.856 seismic.tie-arrangement,.864 moment-connected.composite.haunch.girders, 848–849 steel.deck,.817 composite.construction,.827 concrete,.821 design,.820 886 finishes,.819,.821 fork.lifts,.820 installation,.821 material,.820 parking.garage,.820 product,.819 profile,.818 site.storage,.822 tolerances,.821 venting,.819 wire.mesh,.819–820 Composite.columns advantages,.850 AISC.specification,.856,.858 behavior,.850–851 building.industry,.850 combined.axial.force.and.flexure,.858 encased.(see.Encased.composite.column) examples,.850 filled.(see.Filled.composite.columns) interaction.diagram,.859 nominal.strength,.856 seismic.tie-arrangement,.864 Composite.floor.system,.817 components,.818 joists,.842 slab.elements,.845 trusses,.842–844 Composite.moment.frame,.863 Composite.steel.deck,.see.Steel.deck Compressive.strength encased.composite.column,.853,.857 filled.composite.columns,.855,.858 Computer.analysis,.to.ensure.validity characterizing.structural.behavior design.process,.365–366 structural.analysis,.366–368 structural.engineering.history,.363–365 conceptual.estimates,.guidance.for.preparing,.487–489 differential.shortening.of.steel.columns,.477–487 indeterminate.structures braced.frames.as.beams,.371–372 and.determinate.structures,.comparative.responses, 365–368 free-body.diagrams,.369–370 kinetic.requirements,.370 rigid.frames,.preliminary.analysis,.373–395 stiffness.requirements,.370 physical.intuition,.359 premium.for.height,.concept,.491–492 seismic.base.shear,.preliminary,.457–476 wind.load.estimation,.preliminary,.451–457 Computer.response.spectrum.analyses seven-story.building,.212–221 three-story.building,.211–212 Concentric.braced.frame.(CBF),.702,.864–865 Concrete.buildings clerestory,.538 deep.foundations,.540 diaphragms cast-in-place.concrete.diaphragms,.531–534 precast.concrete.diaphragms,.534 fiber-reinforced.polymer.system design.philosophy,.547 Index flexural.design,.547 mechanical.properties.and.behavior,.546–547 infilling.of.moment.frames,.537 with.lateral-force.resisting.systems,.251 nonstructural.elements acoustical.ceiling,.546 building.ornamentation,.545 design.procedure,.543 life.safety,.541 loss.of.function,.541–542 non-load-bearing.walls,.544–545 nonstructural.damage,.causes,.542–543 precast.concrete.cladding,.545 property.loss,.541 seismic.hazard,.544 stone.or.masonry.veneers,.545 open.storefront,.538 reinforced.concrete.moment.frames,.537–538 shallow.foundations,.538–540 shear.walls confinement.jackets.addition,.536 cracked.coupling.beams,.repair,.536 increasing.shear.strength.of.wall,.535 increasing.wall.thickness,.534–535 infilling.between.columns,.535–536 new.walls.addition,.536 precast.concrete.shear.walls,.536–537 Concrete.moment.resisting.frames,.250–251 Concrete,.preliminary.design concrete.columns,.395–396 continuous.beams,.402–404 guidelines,.440 PT.floor.system balancing,.396–397 design,.396–422 equivalent.loads.and.moments,.396–397 reinforced.concrete.buildings,.unit.quantities,.440–446 reinforcement.and.concrete.in.floor-framing systems,.451 reinforcement.in.columns,.unit.quantities,.446–451 secondary.moments,.422–431 simple.span.beam,.399–402 strength.design.for.flexure,.432–440 Concrete.shear.wall.building,.251 Concrete.slab,.817 effective.width,.833 flat.soffit.reinforce,.845 sealers.on,.819 Concrete.steel.deck,.821–822,.827 Concrete.strength,.703,.823 Concrete.systems,.625–626 Concrete.wall anchorage,.294–295 intersection,.876 steel.boundary.elements,.861–862 steel.column,.877 steel.member,.876 Cone.penetrometer.tests.(CPTs),.288 Configuration.irregularities,.earthquake.effects collapse.patterns,.120–124 diaphragm.(see.Diaphragms) discontinuous.shear.walls,.113–114 optimizing.structural.configuration,.105–108 P-delta.effect,.118–120 887 Index perimeter.strength.and.stiffness,.114–116 reentrant.corners,.116–118 seismic.standards,.110–111 setbacks.and.planes.of.weakness,.120 soft.and.weak.stories,.112–113 stress.concentration,.109 strong.beam,.weak.column,.120 torsion,.109 VLLRSs,.92–95 Constant-velocity.technique,.143,.145,.283 Constrained.torsion,.735 Construction.loads,.11–13 Contraction,.625 Conventional.structures,.671 Council.on.Tall.Buildings.and.Urban.Habitat.(CTBUH), 271,.627 Cracking,.post-tensioned.slabs,.725–726 Critical.damping,.637–638 CTBUH,.see.Council.on.Tall.Buildings.and.Urban.Habitat Cyclones,.224 D D’Alembert’s.principle,.140 Damping,.196 critical.damping,.637–638 effective,.655–656 passive.viscoelastic.dampers,.631–633 simple.pendulum.damper,.641–642 structural.damping,.629–631 tuned.liquid.column.damper,.637–640 tuned.mass.damper,.633–637 tuned.sloshing.damper,.637 Dead.loads,.2 building.materials,.weights,.3–5 calculation,.284–285 effect,.623 elements,.structure.consists,.3 preliminary.design.stage,.6 structural.steel.frame.vs building.height-to-width ratio,.6–7 Decoupling,.642–643 Deflection,.622–623 amplification,.P-delta.effects,.324–327 composite.beam,.836–837 computation,.626 control,.626 dead.load,.838 diaphragm,.326 live-load,.823,.839 long-term,.625 Deformation compatibility,.334–335 drift.and,.330–333 limit,.299 story.drifts,.330 Degrees.of.freedom.(DOF),.151–152 Demand.surge,.85 Design.basis.earthquake.(DBE),.653–654,.662 Design.parameters,.197 Deterministic.dynamic.loads,.126 Diaphragms,.196 collectors,.95–97 deflection,.109,.326 design.procedures,.99–100 flexible,.325 rigid,.103–105,.325 role,.97 seismic-force.distribution,.327–330 shear.transfer,.100–103 types,.97–99 Differential.shortening.of.steel.columns axial.shortening,.477–479,.484 column.length.corrections,.486–487 column.shortening.verification,.486–487 interior.and.exterior.columns,.477–478 simplified.expression.of.Az,.478–486 Directional.procedure,.ASCE.7-10,.235–238 Direct-tension.indicators,.815 Displacement,.velocity,.and.acceleration.(DVA),.74,.77 DLF,.see.Dynamic.load.factor DOF,.see.Degrees.of.freedom Drag.forces,.26 Drift,.building,.623 computed.periods,.319 and.deformation,.330–333 story.(see.Story.drifts) Dual.system analysis,.374 moment.frames.and.shear.walls,.526–530 seismic.design.requirements.for.building.structures, ASCE.7-10,.302 Ductility,.196 behavior,.728–729 reduction,.298 Durability,.625 Dynamic.load.factor.(DLF),.128–130 Dynamic.loads,.18–19 e Earthquake architecture,.699 collapse.patterns heavy.floor.collapse,.123 inadequate.beam-column.joint.strength,.122 local.column.failure,.123 midstory.collapse,.124 pounding,.124 soft-story.collapse,.124 stiffness,.unintended.addition,.121 tension/compression.failures,.122 torsion.effects,.124 wall-to-roof.connection.failure,.123 safe,.125 shaking,.277–278 strengths,.69 torsional.effects,.302 United.States,.277 vibrations,.692 Earthquake.effects,.278 building.resonance,.76–77 computer.response.spectrum.analyses seven-story.building,.212–221 three-story.building,.211–212 configuration.irregularities collapse.patterns,.120–124 diaphragm.(see.Diaphragms) 888 discontinuous.shear.walls,.113–114 optimizing.structural.configuration,.105–108 P-delta.effect,.118–120 perimeter.strength.and.stiffness,.114–116 reentrant.corners,.116–118 seismic.standards,.110–111 setbacks.and.planes.of.weakness,.120 soft.and.weak.stories,.112–113 stress.concentration,.109 strong.beam,.weak.column,.120 torsion,.109 VLLRSs,.92–95 damping,.79 displacement,.74 ductility,.80 duration,.74 dynamic.analysis,.theory dynamic.displacement,.210 modal.superposition,.202 multidegree-of-freedom.systems,.200–202 normal.coordinates,.202–204 orthogonality,.204–210 SDOF.systems,.197–200 faults,.69 geologic.hazards,.80–81 Imperial.Valley.earthquake,.186–187 inertial.forces.and.acceleration,.72–74 Kern.County.earthquake.(1952),.186 lateral.loads,.69–70 local.earthquake.hazards,.82–84 Loma.Prieta.earthquake.(1989),.188 Long.Beach.earthquake.(1933),.186 MCE,.71–72 measurements,.81–82 Mexico.City.earthquake.(1985),.187 natural.periods,.75–76 Northridge.earthquake.(1994),.188–189 nonstructural.components,.86–88 response.spectrum.method acceleration.response.spectrum,.150 characteristics,.159–161 concept,.149 deformation.response.spectrum,.154 design.vs actual.response.spectra,.162 displacement–velocity–acceleration.spectrum, 156–159 DOF,.151–152 earthquake.response.spectrum,.152–154 graphical.description,.148–149 hysteresis.loop,.164–167 pseudoacceleration.response.spectrum,.156 pseudovelocity.response.spectrum,.154–155 SDOF.systems,.150–152 seismic.lateral.forces,.148 seismology,.167–168 tripartite.response.spectrum,.156–159 San.Fernando.earthquake.(1971),.186–187 San.Francisco.earthquake.(1906),.185–186 seismic.analysis.procedures ELF.procedure,.88 linear.dynamic.analysis,.89 seismic.design.considerations adjacent.buildings,.173 building.behavior,.169–170 Index building.configuration,.174–176 building.drift.and.separation,.172–173 building.motions.and.deflections,.172 continuous.load.path,.173 damping,.179–181 design.and.construction,.169 diaphragms,.182–184 ductility,.178 improve.building.seismic.performance,.185 influence.of.soil,.176–177 reduce.seismic.hazards,.184–185 redundancy,.178–179 response.of.buildings,.170–172 seismic.design.wrap-up,.189–190 architectural.implications,.193–194 damage.control.features,.195–197 earthquake.lateral.forces,.190–191 equivalent.lateral.load.procedure,.192–193 structural.concept,.194–195 structural.response,.191–192 site.response.spectrum,.77–78 soft.soil,.acceleration.amplification.due,.74–75 strong-motion.seismograms,.70–71 structural.dynamic DLF,.128–130 dynamic.equilibrium,.138–139 dynamic.loads,.127–128 dynamic.problem,.134–135 free.vibrations,.140–141 ground.motions,.137–138 numerical.integration.technique,.142–146 SDOF.systems,.141–142 seismic.design,.136 static.vs dynamic.analyses,.130–133 wind.gusts,.133–134 system.selection cyclic.behavior,.90–91 elastic.behavior,.89 postelastic.behavior,.89–90 velocity,.74 Whittier.Narrows.earthquake.(1987),.187–188 Earthquake.Protection.Systems.(EPS),.663 Earthquake-resistant.design,.81 Earthquake-shaking.intensity,.82 Eccentrically.braced.frames,.866 Effective.weight,.ASCE.7-10,.310 Effective.width,.composite.beams,.833 Elastic.behavior,.89 Elastomeric.isolators,.647 Elastoplastic.damping,.166 Elastoplastic.restoring.force,.165 El.Centro.earthquake acceleration.response.spectrum,.150–151 response.spectrum,.154–155,.161 strong-motion.seismogram.accelegram,.71 Elemental.deformations,.498 Empire.State.Building,.New.York,.630,.697,.710–711 Encased.composite.column,.817,.849,.860 behavior,.851 compressive.strength,.853,.857 design.overview,.851–852 detailing.requirements,.854 limitations,.852,.856 load.transfer,.854,.857 889 Index shear.design.parameters,.864 shear.strength,.854,.857 strength.of.stud.shear.connectors,.855 tensile.strength,.853 Engineer’s.theory.of.bending.(ETB),.735,.742,.753 Envelope.procedure,.ASCE.7-10,.239–240 EPS,.see.Earthquake.Protection.Systems Equivalent.cantilever,.388–389 Equivalent.lateral.force.(ELF),.73,.88,.303–304,.309–310 elastic,.316 permitted.analysis.procedure,.320–321 Expansion,.625 Exposure.time,.85 Extremely.rare.earthquake,.355 F Failures.and.distresses causes,.675 Hancock.Tower,.Boston,.682–683 Hartford.collapse,.677–679 Hyatt.Regency.walkways.collapse,.683–688 Kemper.Arena,.Kansas.City,.KS,.675–677 Ronan.Point,.679–681 Standard.Oil.of.Indiana.office.building,.Chicago, 681–682 Faults definition,.103 earthquake.effects,.69 Federal.Construction.Council,.809 Federal.Office.of.Safety.and.Health.Administration (OSHA),.799 Field.cutting,.819 Field.tolerances,.798–799 Filled.composite.columns,.849,.860 behavior,.851 compressive.strength,.855,.858 design.overview,.852 limitations,.855,.858 load.transfer,.855–856,.858 shear.strength,.855 tensile.strength,.855 Fillet.welds,.793–794 First.National.City.Corporation.building,.630 Flanges bending,.743–745 shear.force,.732–733 Flat.soffit.reinforced.concrete.slab,.845 Flexible.diaphragm,.325 Flexural.strength determination,.838 negative,.834,.846 positive,.834 Flexural.twist,.741–742 Flood Resistant Design and Construction—ASCE 24,.226 Floods abnormal.loads,.20 building.codes.addressing,.226–227 Floors,.718,.720 Florida Building Code,.226–227 Fluid.viscous.damper,.665 Flutter,.227,.628 Footing,.691–692 Force–deformation.curve,.178 Fork.lift,.820 Foundations caissons,.692 footings,.691 grade.beams,.691 mats,.691 modeling,.730 piers,.692 piles,.691–692 seismic.forces.on,.692–693 slab.on.grade,.691 Fracture,.brittle characteristics,.800 definition,.799 historical.review,.799–800 Framed.tubes.system,.393–395 Frame.structures,.drift.assessment deflections.due.to.column.rotations,.384–385 deflections.due.to.girder.rotations,.385 lateral.deflections,.384 portal.frame.shear.deflections,.383–384 shear.deformation,.382 Free-body.diagrams,.369–370 Freestanding.water.tower,.analytical.model,.73 Frequent.earthquakes,.355–356 Friction.pendulum.system base-isolation.acting,.649 characteristics,.663 preliminary.design,.661–662 single.vs triple.pendulum.bearing,.664 Fully.encased.steel.beams,.826 Fully.tensioned.bolts.installation,.814–815 g Galloping,.227 Geotechnical.report,.ASCE.7-10,.295 Girder.design,.328,.841–842 Glass-walled.skyscraper,.26 Glazing.protection,.58 Global.deformations,.497–498 Grade.beams,.691 Gradient.velocity,.48 Grommet,.723 Groove.welds,.793 complete-joint-penetration.weld, 795–796,.798 definition,.794 partial-joint-penetration.welds,.796,.798 types,.795–796 Guatemala.earthquake.(1967),.69 Gust-effect.factor,.232–233,.252–254 h Half-timbered.style,.699 Hancock.Tower,.Boston,.682–683 Hartford.collapse,.677–679 HDR,.see.High-damping.rubber.bearings Heat.cambering,.807 Heat.curving,.807 Heat.effect,.welding,.807 Heat.straightening,.807 890 Highcliff.Apartment.Building,.Hong.Kong,.639–640 High-damping.rubber.(HDR).bearings,.647 High-frequency.base.balance.model.(H-FBBM),.258 aero-elastic.model,.260 five-component,.261–263 flexible.bar,.261 force.balance.model,.260–261 simulating.torsion,.264 High-rise.architecture architectural.review,.695–696 Bank.of.China.Tower,.Hong.Kong,.711–712 earthquake.architecture,.699 Empire.State.Building,.New.York,.697,.710–711 half-timbered.style,.699 International.Style,.697–698 Jin.Mao.Tower,.Shanghai,.China,.703–704 load.path.concept,.695 marketing.demand,.697 Petronas.Towers,.Kuala.Lumpur,.Malaysia,.705 phases,.693–694 postmodernism,.698 Standard.Oil.of.Indiana.Building,.Chicago, 712–714 supply.and.demand.sides,.697 Taipei.101,.700–702 wind.loads,.695 World.Trade.Center.towers,.New.York,.706–710 High-Velocity.Hurricane.Zone.(HVHZ),.226 Hollow.structural.section.(HSS).braces,.188 Hot.spots,.683 Hurricane,.223–227 Hyatt.Regency.walkways.collapse,.683–688 Hysteretic.damping,.166 i Immediate.occupancy.(IO),.86 Imperial.Valley.earthquake,.186–187 Importance.factor,.ASCE.7-10,.288–290 Inelastic.force–deformation.curve,.298 Inherent.torsion,.317–318 Internal.pressure.coefficients,.234 International.Building.Code.(IBC),.7,.226 International.Code.Council,.226 International.Code.Council.Evaluation.Services (ICC-ES),.227 Interstructural.deformations,.498 I-shaped.cantilever.beam,.754 Isolators effective.stiffness,.654–655 and.structural.elements,.656–658 j Jin.Mao.Tower,.Shanghai,.China,.703–704 John.Hancock.Tower,.Boston,.MA,.630,.636–637 Joists,.composite,.842 k Karman.vortex.street,.53–54 Kemper.Arena,.675–677 Kern.County.earthquake.(1952),.186 Index L Landslides,.80 Larsen–Nielsen.system,.680 LATBSDC,.see.Los.Angeles.Tall.Building.Structural Design.Council Lateral.forces resisting.systems,.251 seismic.design.criteria,.ASCE.7-10,.293–294 Lateral.loads,.earthquakes,.69–70 Lead-rubber.bearings,.647–648 Life.safety,.86 Lift.forces,.28 Lightweight.mass,.195 Linear.dynamic.procedure.(LDP),.509 Linear.static.procedure.(LSP),.509 Liquefaction,.80 Live.loads character,.8 International.Building.Code,.7 live-load.reduction,.10–11 minimum.uniformly.distributed.live.loads,.8–10 Load.balancing,.397,.724 Load.combinations,.ASCE.7-10,.308–309 Load.effect ASCE.7-10,.308–309 limitations,.257 Load.factor.method,.16 Loads,.building.structures abnormal.loads explosions.effects,.19–20 floods,.20 vehicle.impact.loads,.20 classification,.buildings,.20–21 construction.loads,.11–13 dead.loads,.2 building.materials.weights,.3–5 elements,.3 preliminary.design.stage,.6 structural.steel.frame.vs building.height-to-width ratio,.6–7 dynamic.loads,.18–19 importance.factors,.20–21 lateral.soil.load,.14–15 live.loads character,.8 International.Building.Code,.7 live-load.reduction,.10–11 minimum.uniformly.distributed.live.loads,.8–10 occupancy.loads,.2 risk.categories,.20–21 self-straining.forces,.18 snow,.2–3,.15–16 thermal.and.settlement.loads,.16–18 Load.transfer.mechanisms bolted.connections,.810 encased.composite.column,.854,.857 filled.composite.columns,.855–856,.858 shear.connector,.834–835 Local.winds,.38 Loma.Prieta.earthquake,.188,.277 Long.Beach.earthquake.(1933),.186 Long-span.bridges,.628 Long-term.deflection.design,.625 Index Los.Angeles.Tall.Building.Structural.Design.Council (LATBSDC),.355 Lumped-impulse.procedure,.143 M Magnetic.partial.testing.(MT),.welding.inspection,.797 Magnitude,.earthquakes,.81 Main.wind-force-resisting.systems.(MWFRS) loads.for.design,.259–260 wind.load.calculations,.228 and.window.pressures,.254–256 Mapped.acceleration.parameters,.ASCE.7-10,.281 Marilyn.Monroe.effect,.273 Masonry.walls,.anchorage,.294–295 Massachusetts.Institute.of.Technology.(MIT),.683 Mats,.691 Maximum.considered.earthquake.(MCE),.71–72,.662 Mexico.City.earthquake.(1985),.187 Middle.strip,.724 Modal.analysis.procedure,.320–322 Modal.superposition.method,.320 Mode.shape,.316 Multistory.buildings field-welded,.799 plumbness,.798 N National.Bureau.of.Standards.report,.688 National.Earthquake.Hazards.Reduction.Program (NEHRP),.71 National.Hurricane.Center,.225 Near-optimum.seismic.performance,.105 Newton’s.law,.73 Nonlinear.dynamic.procedure.(NDP),.509 Nonlinear.static.procedure.(NSP),.509 Nonuniform.torsion,.731,.741 Northridge.earthquake.(1994),.188–189 o Occupancy.category,.ASCE.7-10,.288–290 Occupancy.loads,.2 Operational.buildings,.86 Ordinary.concentric.braced.frame.(OCBF),.188 Oscillation,.628 P Parapets.and.rooftop.equipment,.58 Parking.garage,.820 Partial-joint-penetration.(PJP).groove.welds,.796,.798 Passive.energy.dissipation,.664–665 Passive.viscoelastic.dampers,.631–633 PBD,.see.Performance-based.design P-delta.effects,.319–320 deflection.amplification,.324–327 story.drifts,.333 Peak.pressure,.670–671 Pedestrian.wind.studies,.273–275 Pendulum.damper nested,.642 simple,.641–642 891 Penetrant.testing.(PT),.welding.inspection,.797 Performance-based.design.(PBD);.see also.Performancebased.seismic.design AB-083,.356 building.codes,.344 definitions,.344 design.and.performance.issues,.commercial.office buildings nonstructural.system.issues,.353 office.buildings.performance,.351–352 past.earthquakes,.351–352 performance.expectations.and.requirements,.352 seismic.hazards.and.site.issues,.352 structural.system.issues,.352–353 discretely.defined.performance.objectives,.343 expected.performance current.codes,.348 nonstructural.components,.348–349 structural.components,.348 for.natural.hazards,.345–346 performance.improvements.to.reduce.seismic.risk architectural.configuration,.selection,.350 nonstructural.component.performance, consideration,.350–351 structural.materials.and.systems,.selection,.349 seismic.design,.346–347 Performance-based.seismic.design.(PBSD);.see also Performance-based.design acceptable.risk,.determination,.346–347 current.specifications building.performance.levels,.354–356 building.performance.objectives,.354 recommended.administrative.bulletin.on.the seismic.design.(AB-083),.356 Permitted.analysis.procedure,.320–321 Petronas.Towers,.Kuala.Lumpur,.Malaysia,.705 Piers,.692 Piezoelectric.transducer,.797 Piles,.691–692 foundation,.692–693 load.capacity,.693 PJP.groove.welds,.see.Partial-joint-penetration.groove welds Plan.irregularity,.ASCE.7-10,.302–304 Plastic.distribution.method,.851,.856,.858 Plug.welds,.793,.796 Portal.method and.cantilever.analysis,.377–381 single-story.portal.frame,.376–377 Postmodern.architecture,.693 Post-tension.strengthening anchorages,.715–716 banded.tendons,.724–725 barrel.ring,.724 beams,.717–719 button-headed.tendon.system,.722 closing.comments,.720,.722 cracking,.725–726 floors,.718,.720 grommet,.723 historical.recap,.722–724 irregular.column.layout,.725 landmarks,.724 load.balancing,.724 892 removing.columns,.719,.721 sawtooth.arrangement,.722 supporting.tendons,.715 tendon.protection,.716–717 Potential,.earthquakes,.81 Premium.for.height,.491–492 Prevailing.winds,.38 Probabilistic.hazard.assessment,.85 Probabilistic.seismic.hazard.analysis.(PSHA),.84–86,.281 Product.integrals calculations,.751 evaluation,.749 table,.749 Properly.sustained.analysis,.314 Pulse.echo.technique,.797 r Radiographic.testing.(RT),.welding.inspection,.798 Raft.foundations,.692 Random.dynamic.loads,.126 Reduced.beam.section.(RBS),.702 Redundancy,.299–300 ASCE.7-10,.305–308 desirability,.305 Reentrant.corner.condition,.109 Rehabilitation.strategies,.548 Reinforced.concrete.special.moment.frames analysis,.729–730 design.principles,.727–729 drift.limits,.727 proportioning,.727 strength,.727 Reinforcement ANSI/SDI,.823–824 columns,.unit.quantities,.446–451 floor-framing.systems,.451 Residual.stress,.807–808 Response.spectrum.method acceleration.response.spectrum,.150 actual.response.spectra,.162 Boston,.MA,.287 characteristics,.159–161 concept,.149 deformation.response.spectrum,.154 design,.162,.283–286 displacement–velocity–acceleration.spectrum, 156–159 DOF,.151–152 earthquake.response.spectrum,.152–154 graphical.description,.148–149 horizontal,.288 hysteresis.loop,.164–167 Los.Angeles,.CA,.286 pseudoacceleration.response.spectrum,.156 pseudovelocity.response.spectrum,.154–155 SDOF.systems,.150–152 Seattle,.WA,.287 seismic.lateral.forces,.148 seismology,.167–168 tripartite.response.spectrum,.156–159 Restrained.warping.torsion,.745–746 Richter.scale,.69 Rigid.diaphragm,.325 Index Rigid.frames,.preliminary.analysis approximate.analysis,.374–375 cantilever.method,.391–393 deflection.calculations,.386–390 drift.assessment,.382–386 dual.systems,.analysis,.374 framed.tubes,.393–395 portal.method,.373,.376–382,.391–393 Rigid.pressure.model component.and.cladding.pressures,.259 MWFRS.design,.259–260 purpose,.258–259 Rockefeller.Center,.New.York.City,.696 Ronan.Point disaster,.673 progressive.collapse,.679–681 Roof.coverings,.58 Roughness.length.parameter,.249 s Saffir/Simpson.scale,.224–225 San.Fernando.earthquake.(1971),.186–187 San.Francisco.earthquake.(1906),.185–186 SDOF,.see.Single-degree-of-freedom.systems Sears.Tower,.630 Seasonal.winds,.38 Sectorial.moment.of.inertia,.750,.752 Seiches,.81 Seismic.design,.669–670 base.shear.distribution,.776 bending.deformations,.775 building.drift,.780 building.plan.irregularities,.783 buildings.falling.down,.770 building.vertical.irregularities,.784 collapse.mechanism,.779 deep.beam.action.of.diaphragm,.788 diaphragm.components,.787 dynamic.loading,.782 earthquake.probabilities,.773 elastic.and.elastoplastic.response,.783 five-story.building,.775 fundamental.period.in.seconds,.774 fundamental.period.vs building.height,.772 ground.shaking,.acceleration.time,.771 horizontal.ground.acceleration,.771 horizontal.irregularities,.786 hysteretic.curves,.773 nonsymmetric.heavy.loading,.787 optimal.structural/architectural.configuration,.779 perimeter-resistance.conditions,.777 reentrant.corner.condition,.790–791 reentrant.corner.plan.forms,.789 response.coefficients.vs period,.772 shear.and.chord.forces,.789 short.column.effects,.778 soft.first.story,.776–778 stiff.and.flexible.structures,.781 stress.on.reentrant.corner,.790 tectonic.plates,.770 torsional.moment,.787 types,.773 undesired.interaction.effects,.780 Index vertical.irregularities,.785 vibration.modes,.776 vibration.waves,.774 vulnerable.building.group,.775 Seismic.design.criteria,.ASCE.7-10,.278 acceleration.response.parameters,.282 adjusted.acceleration.parameters,.282 alternate.materials,.279 categories,.290–292 concrete/masonry.walls.anchorage,.294–295 design.base.shear,.284–286 geotechnical.report,.295 importance.factor,.288–290 lateral.forces,.293–294 limitations,.295 mapped.acceleration.parameters,.281 methods.of.construction,.279 occupancy.category,.288–290 requirements,.292–295 seismic.ground.motion.values,.279–281 site.classification,.282–283 site.coefficient,.282 site-specific.ground.motion.analysis,.286–288 Seismic.design.requirements.for.building.structures, ASCE.7-10,.295 accidental.torsion,.317–318 analysis.procedure,.309–310 base.shear,.312–313 building.separation,.333–334 Category.A.buildings,.336–337 Category.B.buildings,.337–338 Category.C.buildings,.338–339 Category.D.buildings,.339–341 Category.E.buildings,.341 Category.F.buildings,.341 connection.design,.299 continuous.load.path.and.interconnection,.299–302 deformation.compatibility,.334–335 deformation.limit,.299 direction.of.loading,.309 discontinuous.walls/frames,.elements.supporting, 304–305 drift.and.deformation,.330–333 dual.system,.302 effective.seismic.weight,.310 ELF.procedure,.311 foundation.modeling.criteria,.310 horizontal.distribution.of.forces,.316–317 horizontal.shear.distribution,.324 hysteretic.behavior,.299 inherent.torsion,.317–318 interaction.effects,.311 load.effect/combinations,.308–309 member.design,.299 modal.response.parameters,.323–324 modal.superposition.method,.320–321 number.of.modes,.323 P-delta.effects,.319–320 deflection.amplification,.324–327 story.drifts,.333 period.determination,.313–316 period.for.computing.drift,.319 plan.(horizontal).irregularity,.302–304 redundancy,.305–308 893 requirements,.296–299 scaling.design.values.of.combined.response,.324 seismic.loads.due.to.vertical.ground.motions,.316 soil–structure.interaction,.322–323 story.drifts.determination,.318–319 structural.modeling,.310–311 vertical.distribution.of.seismic.force,.314–315 vertical.irregularity,.303–304 Seismic.evaluation.and.rehabilitation additional.damper.alternatives,.579–580 analysis.procedures,.503–504 ASCE/SEI.Standard.41-06 concrete.building,.526–530 four-step.iterative.process,.505–506 performance.levels.overview,.507–508 permitted.design.methods,.509 steel.building,.521–525 systematic.rehabilitation,.509–515 beam.reinforced,.welding.shear.connector,.614 bearing.capacity,.603 bolted.splice.upgrade,.568 bolting.built-up.steel.member,.616 bonded.steel.plate,.620 braced.structural.steel.buttresses,.565 building.with.external.frames,.567 cast-in-place.concrete.wall,.572–573 code.sponsored.design ASCE/SEI.41-06.document,.494–495,.497 building.deformations,.497–498 Commonwealth of Massachusetts Building Code,.496 damage.types,.494 failure.of.nonstructural.architectural.elements,.495 IBC-06.code,.496 lateral-load-resisting.systems,.496 Prestandard and Commentary for the Seismic Rehabilitation of Buildings,.497 seismic.provisions.of.IBC-06,.496 structural.damage,.496 collector.anchorage,.602 combined.shotcrete.and.cast-in-place.construction,.571 common.deficiencies.and.upgrade.methods concrete.building,.549 diaphragm,.531–534 concrete.and.steel.overlays.for.concrete.columns,.591 concrete.beam,.613 concrete.collector concrete.slab,.599 existing.beam,.598 waffle.slab,.599 concrete.pedestal.existing.beam,.574 concrete.wall.connection concrete.joists,.587 concrete.slab,.585–586 waffle.slab,.588 connection.beams,.strengthening,.559 corbel.at.linking.slab,.596 cover.plate.at.existing.beam,.568 diaphragm.strengthening,.600 discontinuous.wall.at.existing.beam,.573 drilled.pier.footing,.609–610 drilled.pier.foundation,.608 enlarging.section.of.existing.concrete.beam,.615 existing.concrete.frame.building,.strengthening,.561 894 existing.pile.foundation,.upgrading,.559 existing.reinforced.concrete.wall,.strengthening, 562–563 fiber.anchor.details,.594 fin.plate.connection.options,.577 global.structural.characteristics,.501 historic.status,.502 horizontal.braced.frame.connection,.601 HSS.brace.at.existing.beam–column.connection, 575–576 idealized.earthquake.force–displacement.relationship, 499–500 jacketing.of.circular.column,.564 micropile.details,.612 minimum.design.loads,.498 modified.base.plate,.578 nonstructural.risk.mitigation,.504–505 occupancy,.502 pile.cap,.606 rehabilitation.objective general.steps,.501 objective.selection,.502–503 performance.levels,.502 rehabilitation.method,.503 seismic.hazard,.502 strategy,.503 uses,.493–494 reinforcing.existing.beams.by.welding,.619 seismic.retrofit.of.columns,.592,.595 seismic.risk.reduction.strategies building.performance.improvement,.520–521 reduce.site.hazards,.520 seismic.site.hazards,.501 seismic.upgrading,.553–557 base.isolation,.518–519 configuration,.517 deformation.capability,.new.and.existing.materials, 517–518 eccentricity,.517 energy.dissipation,.519 horizontal.diaphragms.and.foundation.ties,.517 strengthening.technique.selection,.519 structural.systems,.516–517 shear.capacity.at.slab–wall.joint,.595 shear.strengthening concrete.diaphragm,.602 concrete.shear.walls,.593 shear.walls confinement.jackets.addition,.536 cracked.coupling.beams,.repair,.536 increasing.shear.strength.of.wall,.535 increasing.wall.thickness,.534–535 infilling.between.columns,.535–536 new.walls.addition,.536 precast.concrete.shear.walls,.536–537 spread.footing,.605–607 steel.chord/collector.at.floor.perimeter,.601 steel.plate collector,.597 improve.shear.resistance,.616 strengthening.concrete.columns,.618 strengthening.concrete.slabs,.post-tensioning,.617 strengthening.of.deep.coupling.beam,.590 strip.footing,.604,.611 Index transfer.girder,.fiber.wrap,.558 two-phase.design,.499 typical.braced.frame concrete.column.connection,.582 configurations,.581 typical.connection concrete.diaphragm,.597 existing.concrete.beam,.583 existing.concrete.column,.584 typical.strengthening.of.shallow.coupling.beam,.589 unstiffened.steel.plate.shear.wall,.576 verification.of.rehabilitation.design,.504 wall.at.existing.column,.572 welded.haunch,.571 welded.splice.upgrade,.569 Seismic.force on.foundation.design,.692–693 horizontal.distribution,.316–317 vertical.distribution,.314–315 Seismic-force-resisting.system linear.analysis,.321 structural.elements,.294,.308 vertical.elements,.303,.328 Seismic.isolation ASCE.7-10.design.provisions.(see.ASCE.7-10.design provisions) base-isolated.buildings,.643–644,.646 decoupling,.642–643 elastomeric.isolators,.647 fixed-base.building,.643–644 flexibility,.644 mechanical.properties,.645–646 salient.features,.645 sliding.isolators,.647–650 Seismic.shaking,.84 Self-straining.forces,.18 Serviceability.considerations building.motion.perception,.629 camber,.625 concrete.systems,.625–626 contraction,.625 deflections,.622–623 drift,.623 durability,.625 expansion,.625 long-term.deflection,.625 structural.damping,.629–631 tall.building.motions,.627–628 vibrations,.623–324 Serviceability.limit.states,.621–622,.625 Service.loads,.621–622 Shallower.construction,.625–626 Sharp.pencil.effects,.314 Shear.center,.731 concept,.732 C-section,.737–738 distance.determination,.733 location,.751,.760–761 singly.symmetric.section,.748 warping.theory,.743 Shear.connector arrangements,.832 composite.columns,.854 load.transfer,.834–835 895 Index placement,.836 spacing,.836,.839 strength,.834–835 transfer.forces,.851 Shear.distribution,.horizontal,.324 Shear.failure,.728 Shear.flow rectangular.section,.737 thin-walled.section,.737 Shear.force flange,.732–733 warping.torsion,.744 Shear.strength encased.composite.column,.854,.857 filled.composite.columns,.855 Shear.stress,.731 cellular.section,.738–740 circular.cross.section,.734 circular.shaft,.736 hollow.rectangular.section,.738 hollow.section,.739 St Venant’s,.750 Shear.walls,.196–197,.731 beam-to-shear.wall.connection,.867–873 composite.steel.plate,.861–862 singly.symmetric,.732 steel.link.beams,.862 torsion.analysis bending.stress,.756–757,.762–763 comparison.of.stresses,.756 properties,.762 randomly.distributed.shear.walls,.759–760 shear.center.location,.760–761 twin-core.example,.755 warping.stress,.758 Shear.wave,.velocities,.288 Single-degree-of-freedom.(SDOF).systems,.141–142 Single.pendulum.bearing,.662 Site.storage,.steel.deck,.822 Slab.on.grade,.691 Sliding.isolators,.647–650 Slip-critical.bolted.connections,.813–814 Slot.welds,.793,.796 Slurry.wall.construction,.710 Snow.loads,.2–3 Snug-tight.bolts.installation,.814–815 Softening,.76 Soft-/weak-story.types,.109 Soft-story.mechanism,.121 Soil–structure.interaction,.310,.322–323 Soil–structure.resonance,.286 South Florida Building Code,.226 Special.moment.frames analysis,.729–730 drift.limits,.727 ductile.behavior,.728–729 proportioning,.727 shear.failure,.728 strength,.727 strong-column.design,.728 weak-beam.design,.728 Spectral.accelerations,.mapped,.286 Sprayed-on.fireproofing,.845,.850 Square.root.of.the.sum.of.the.squares.(SRSS),.152 Standard.Oil.of.Indiana.Building,.Chicago,.681–682, 712–714 Standard.penetration.tests.(SPTs),.288 Static.loads,.18 Steel.buildings,.793 ASTM.specification,.801 plates.and.bar,.803 slip-critical.bolted.connections,.814 structural.fastener.types,.805–806 structural.shape,.802–803 bolted.connections bearing,.812 double.shear,.812 failure.modes,.813 load.transfer.mechanisms,.810 shear,.811–812 slip-critical,.813 tension,.811 brittle.fracture characteristics,.800 historical.review,.799–800 field.tolerances,.798–799 with.lateral-force.resisting.systems,.251 structural.steel.(see.Structural.steel) welding disadvantage,.793 fillet,.793–794 groove.welds,.795–796 inspection,.797–798 plug.4,.796 slot,.796 tack,.794 types,.793 Steel.deck,.817 composite.beams,.860 ribs.parallel,.829–830 ribs.perpendicular,.828–829 concrete,.821–822,.827 design,.820 finishes,.819,.821 fire.rating,.877 fork.lifts,.820 gage.and.thickness,.878 installation,.821 material,.820 maximum.spans,.878 parking.garage,.820 product.of,.819 profile,.818 site.storage,.822 tolerances,.821 venting,.819 wire.mesh,.819–820 Steel.Deck.Institute.(SDI) accessories,.824 accessory.attachment,.825 cantilever.loads,.824 concentrated.loads,.823 concrete.strength,.823 deck.deflection,.822 design,.822 diaphragm.shear.capacity,.823 execution,.824–825 finish,.822 896 fire.resistance,.822 installation/anchorage,.825 live-load.deflection,.823 minimum.bearing,.823 products,.822 reinforcement,.823–824 suspended.loads,.823 Steel-framed.building,.671 Steel.frameworks.construction,.809 Steel.link.beams,.862,.866–867 Steel.moment.resisting.frame,.250 Stiffness.method recommendations,.730 significance,.303 warping-column.model,.766–768 Storm.surge,.225 Story.drifts deformation,.330 determination,.318–319,.332 P-delta.effects,.333 Strength.limit.states,.621 Stress.concentration,.109 Strong-motion.seismograms,.70,.190 Structural.analysis engineering.design.process conceptual.stage,.365 construction.stage,.366 final.design.stage,.366 preliminary.design.stage,.365 selection.stage,.365–366 principles equilibrium.requirements,.367–368 framed.structure,.366 requirements,.367 Structural.damping,.234,.629–631 Structural.distress,.625 Structural.dynamic,.earthquake.effects DLF,.128–130 dynamic.equilibrium,.138–139 dynamic.loads,.127–128 dynamic.problem,.134–135 free.vibrations,.140–141 ground.motions,.137–138 numerical.integration.technique,.142–146 SDOF.systems,.141–142 seismic.design,.136 static.vs dynamic.analyses,.130–133 wind.gusts,.133–134 Structural.modeling,.ASCE.7-10,.310–311 Structural.steel,.669,.798 allowable.stress.method,.800 load.resistance.factor,.800 thermal.effects,.800–801 coefficient.of.expansion,.807–810 heat.cambering,.801 heat.straightening,.801 residual.stress,.807–808 welding.procedure,.801 welds.type,.793 Structural.symmetry,.196 Stud.shear.connector,.827,.835,.855 St Venant’s.principle,.753 St Venant’s.shear.stress,.750 St Venant’s.torsion.formulas,.740 Index Subchord.reinforcement,.329 Suspended.loads,.ANSI/SDI,.823 Systematic.rehabilitation as-built.conditions.determination,.510–511 combined.gravity.and.seismic.demand,.513–514 component.capacity.calculations.QCE.and.QCL capacity.vs demand.comparisons,.515 deformation-controlled.actions,.514 force-controlled.actions,.514–515 model.setting.and.determination.of.design.forces, 511–513 base.shear,.vertical.distribution,.512 building.period.calculation,.511 diaphragm.design.force.Fpx,.513 pseudolateral.load.(base.shear),.determination,.512 primary.and.secondary.components,.511 rehabilitation.steps,.509 seismic.ground.motions,.determination,.510 T Tack.welds,.794 Tacoma.Narrows.Bridge,.628–629 Taipei.101,.700–702 Taipei.Financial.Center,.641–642 Tectonic.plates,.69,.277 Tensile.strength encased.composite.column,.853 filled.composite.columns,.855 Tension,.bolts,.811,.815 Tension-capable.bearing,.664 Thermal.and.settlement.loads,.16–18 Thermal.effects,.structural.steel,.800–801 coefficient.of.expansion,.807–810 heat.cambering,.801 heat.straightening,.801 residual.stress,.807–808 welding.procedure,.801 Thunderstorms,.224 Time.histories,.70 TLCD,.see.Tuned.liquid.column.damper TMD,.see.Tuned.mass.damper Tolerances field,.798–799 steel.deck,.821 Topographic.factor,.232,.254 Torsion accidental,.317–318 bending,.735 bending.stresses,.762–763 constrained,.735 effects.on.buildings,.735 inherent,.317–318 moment,.109 non.uniform,.731 principal.sectorial.coordinate.diagram,.750,.752 product.integrals,.749 properties,.762 rotation,.762 sectorial.properties.calculation,.750–752 shear.center,.748 shear.stress,.731 cellular.section,.738–740 circular.cross.section,.734 897 Index circular.shaft,.736 hollow.rectangular.section,.738 hollow.section,.739 St Venant’s,.750 shear.wall.analysis bending.stress,.756–757,.762–763 comparison.of.stresses,.756 properties,.762 randomly.distributed,.759–760 shear.center.location,.760–761 twin-core.example,.755 warping.stress,.758 structural.systems,.735 terminology,.735 thin-walled.section,.737 warping.(see.Warping.torsion) Torsion.constants,.750,.752,.763–766 Transfer.girder,.fiber.wrap,.558 Transverse.wind,.51 Triple.pendulum.bearing,.662–663 Tropical.cyclones,.33 Tropical.storm,.224 Trusses,.composite,.842–844 TSD,.see.Tuned.sloshing.damper Tsunamis,.81 Tuned.liquid.column.damper.(TLCD) critical.damping,.637–638 Highcliff.Apartment.Building,.Hong.Kong, 639–640 sloshing.water.damper,.638 Wall.Center,.Vancouver,.BC,.639–640 Tuned.mass.damper.(TMD),.25,.630 advantages,.634 application,.633–634 Citicorp.Tower,.634–636 design,.637,.702 frequency,.634 Hyatt.Regency.Complex,.684–685 John.Hancock.Tower,.636–637 linked.pendulum.type,.634 simple.pendulum.type,.634 Tuned.sloshing.damper.(TSD),.637 Turbulence,.28 Turn-of-nut.method,.bolts.installation,.815 Twisting,.circular.shaft,.736 Twist-off-type.tension-control.bolts,.815 Typhoons,.33,.224 u Ultrasonic.testing.(UT),.welding.inspection,.797–798 Uniform.Building.Code.(UBC),.58 United.States.Geological.Survey.(USGS),.71 v Vehicle.impact.loads,.20 Venting,.steel.deck,.819 Vertical.distribution.of.seismic.force,.314–315 Vertical.irregularity,.111,.303–304 Vertical.lateral-load-resisting.systems.(VLLRSs),.325 braced.frames,.93 elements,.95,.98–99 moment-resistant.frame,.93–95 seismic.performance,.93 shear.walls,.92 Vibration.modes,.77 Vibrations,.623–624 Vierendeel.truss.preliminary.analysis,.391 Viscoelastic.dampers passive,.631–633 schematics,.632–633 World.Trade.Center.towers,.632 Visual.testing.(VT),.welding.inspection,.797 VLLRSs,.see.Vertical.lateral-load-resisting.systems Vortex.shedding,.53–54,.627–628 w Wall.Center,.Vancouver,.BC,.639–640 Warping-column.model,.stiffness.method,.766–768 Warping.torsion,.731,.735,.741 bending.flanges,.743–745 center.of.gravity,.743 constant,.750 core.properties,.743 general.theory,.753–755 I-section.core,.742,.746 open.sections,.763–766 restrained,.745–746 sectorial.coordinate,.742,.746–748,.750 shear.center,.743 shear.force,.744 Welded.joints,.795 Welding heat.effect,.807 inspection magnetic.partial.testing,.797 penetrant.testing,.797 radiographic.testing,.798 ultrasonic.testing,.797–798 visual.testing,.797 steel.buildings disadvantage,.793 fillet,.793–794 groove.welds,.795–796 plug.4,.796 slot,.796 tack,.794 types,.793 Whittier.Narrows.earthquake.(1987),.187–188 Wiggly.line.graphic.records,.70–71 Wind.directionality.factor,.230 Wind.engineering,.227–228 Wind.forces,.223–225 Wind.gustiness,.629 Wind-induced.building.motions,.270–272 Wind.loads action,.50–51 aerodynamic.damping,.55–56 ASCE.7-10 cladding.loads,.66–68 comments,.68 components.and.cladding,.62–63 MWFRS,.59–62 pressures.and.suctions,.64–65 behavior,.45–47 building.codes.addressing,.226–227 898 building.sway,.57–58 calculation ASCE.7-10,.228–229 C.&.C,.228 enclosure.classifications,.233 exposure.category,.230–231 general.requirements,.228–230 gust.effects,.232–233 internal.pressure.coefficient,.234 MWFRS,.228 parameters,.230 structural.damping,.234 topographic.factor,.232 wind.directionality.factor,.230 description ASD,.23 flow,.23,.25,.27 gradient.wind.speed,.29 lift.forces,.28 map.for.United.States.and.Alaska,.24 surface.boundary.layer,.29 TMD,.25 turbulence,.28 wind.circulation,.30 wind.pressure,.26 design.criteria,.56–57 dynamic.action,.51 effectiveness,.59 limitations,.59 mean.wind.loads,.47–48 wind.turbulence,.49–50 wind.velocity.with.height,.variation,.48–49 scope,.58 vortex.shedding aeronautical.engineering,.51–52 end.effect,.55 parallel.upwind.streamlines,.53–54 Strouhal.number,.54 3D.flow,.51,.53 2D.wind.flow,.51–52 wind.flow,.51,.53 wind/building.interactions aerodynamic.pressure,.42–43 basic.wind.speed,.40–41 building.height,.41 design.level.winds,.44–45 exposure.categories,.40 internal.pressure,.42 probability.of.occurrence,.43–45 Index routine.winds,.44 stronger.winds,.44 topography,.41 tornadoes,.45 wind.storms,.types downburst,.32 down-slope.wind,.31–32 hurricane,.33–34 natural.hazards,.36–39 northeastern.winds,.33 straight-line.wind,.31 thunderstorm,.33 tornado,.34–36 wind.engineering,.probabilistic.approach,.39–40 Window.pressures,.254–256 Wind.tunnel.procedure aero-elastic.model,.264–267 building.drift,.269–270 damping.ratio,.269 H-FBBM,.260–264 inter-story.drift,.269 limitations,.257 load.effects,.257 lower.limits,.267–268 mass.distribution,.269 natural.frequencies.and.mode.shapes,.268 rigid.pressure.model,.258–260 structural.properties,.268–269 test.requirements,.256–257 test.results,.267–268 wind-induced.loads,.257 Wind.tunnel.test,.259 Wind.velocity,.American.standards,.227 Wind.velocity.pressure,.234–235 Wire.mesh,.819–820 World.Trade.Center.towers,.New.York floor.construction,.708 outrigger.system,.709 perforated.perimeter.tube,.707 slurry.wall.construction,.710 spandrel.plates,.707 substructure,.710 terror.code,.710 vertical.fenestration,.706 viscoelastic.dampers,.632 z Zero.warping.displacement,.748

Ngày đăng: 11/04/2023, 16:01

w