Untitled ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN THỊ LUẬN TẬP IĐÊAN NGUYÊN TỐ GẮN KẾT CỦA MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG QUA ĐỊA PHƯƠNG HÓA VÀ ĐẦY ĐỦ HÓA LUẬN VĂN THẠC SỸ TOÁN HỌC THÁI NGUYÊ[.]
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN THỊ LUẬN TẬP IĐÊAN NGUYÊN TỐ GẮN KẾT CỦA MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG QUA ĐỊA PHƯƠNG HÓA VÀ ĐẦY ĐỦ HĨA LUẬN VĂN THẠC SỸ TỐN HỌC THÁI NGUYÊN - 2016 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN THỊ LUẬN TẬP IĐÊAN NGUYÊN TỐ GẮN KẾT CỦA MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG QUA ĐỊA PHƯƠNG HÓA VÀ ĐẦY ĐỦ HÓA Chuyên ngành: Đại số lý thuyết số Mã số: 604 601 04 LUẬN VĂN THẠC SỸ TOÁN HỌC Người hướng dẫn khoa học: GS TS LÊ THỊ THANH NHÀN THÁI NGUYÊN - 2016 LỜI CAM ĐOAN Tôi xin cam đoan kết nghiên cứu luận văn trung thực không trùng lặp với đề tài khác Tôi xin cam đoan tài liệu trích dẫn luận văn rõ nguồn gốc Thái Nguyên,ngày 15 tháng 04 năm 2016 Học viên NGUYỄN THỊ LUẬN i LỜI CẢM ƠN Luận văn hoàn thành bảo hướng dẫn tận tình GS TS Lê Thị Thanh Nhàn Cô dành nhiều thời gian hướng dẫn giải đáp thắc mắc tơi suốt q trình làm luận văn Tơi xin bày tỏ lịng biết ơn sâu sắc đến Tơi xin gửi tới thầy Viện Tốn học Hà Nội, Khoa Toán, Khoa Sau đại học Trường Đại học Sư phạm-Đại học Thái Nguyên lời cảm ơn sâu sắc công lao dạy dỗ suốt trình học tập trường Tơi xin cảm ơn gia đình, bạn bè người thân quan tâm, tạo điều kiện, động viên, cổ vũ để tơi hồn thành nhiệm vụ Thái Ngun,ngày 15 tháng 04 năm 2016 Học viên NGUYỄN THỊ LUẬN ii Mục lục Lời cam đoan i Lời cảm ơn ii Mở đầu 1 Kiến thức chuẩn bị 1.1 Tập iđêan nguyên tố liên kết qua địa phương hóa đầy đủ hóa 1.2 Tiêu chuẩn Artin cho môđun 1.3 Biểu diễn thứ cấp tập iđêan nguyên tố gắn kết môđun Artin 1.4 Môđun đối đồng điều địa phương 11 Tập iđêan nguyên tố gắn kết môđun đối đồng điều địa phương qua địa phương hóa đầy đủ hóa 16 2.1 Hệ tham số 16 2.2 Các lớp vành đặc biệt 18 2.3 Các bổ đề liên quan 21 2.4 Tập iđêan nguyên tố gắn kết môđun đối đồng điều địa phương qua địa phương hóa đầy đủ hóa 28 Kết luận 35 Tài liệu tham khảo 36 iii Mở đầu Cho (R, m) vành giao hoán địa phương Noether, M R-môđun hữu hạn sinh với dim M = d A R-môđun Artin Với p ∈ Spec R ta biết AssRp (Mp ) = {qRp | q ∈ AssR M, q ⊆ p} Với A R-môđun Artin, tập iđêan nguyên tố gắn kết A, kí hiệu AttR A, định nghĩa I G Macdonald [Mac] có vai trò quan trọng tương tự vai trò tập iđêan nguyên tố liên kết M Ta biết môđun đối đồng điều địa phương Hmi (M ) Artin với i ≥ Do câu hỏi tự nhiên đặt liệu mối quan hệ tương tự tập i−dim(R/p) AttRp HpRp (Mp ) AttR Hmi (M ) có khơng, tức công thức i−dim(R/p) AttRp HpRp (Mp ) = {qRp | q ∈ AttR Hmi (M ), q ⊆ p} (1) có với p ∈ Spec(R) khơng? Trong [S], R.Y Sharp chứng minh R vành thương vành Gorenstein địa phương nguyên lý chuyển dịch qua địa phương hóa (1) Tuy nhiên nguyên lý không trường hợp tổng quát (xem [BS, Ví dụ 11.3.14]) b M c vành R b-môđun đầy đủ R M theo Kí hiệu R c: tơpơ m-adic, ta có mối quan hệ sau tập AssR M AssRb M [ c c b pR) b AssR M = {P ∩ R | P ∈ AssRb M } AssRb M = AssRb (R/ p∈AssR M Vậy câu hỏi với R-môđun Artin A mối quan hệ tương tự tập AttR A AttRb A có khơng? Với R-mơđun Artin A ta biết AttR A = {P ∩R | P ∈ AttRb A} (xem [BS]) Tuy nhiên mối quan hệ tương tự công thức thứ hai không A = Hmi (M ) Tức quan hệ AttRb Hmi (M ) [ = i (M ) p∈AttR Hm b pR) b AttRb (R/ (2) nhìn chung khơng xảy Chú ý R vành thương vành Gorenstein địa phương cơng thức (2) với mơđun đối đồng điều địa phương Hmi (M ) (xem [CN]) Cuối năm 2014, báo "Attached primes of local cohomology modules under localization and completion" đăng tạp chí Đại số, L T Nhàn P H Quý chứng minh chuyển dịch qua địa phương hóa (1) chuyển dịch qua đầy đủ hóa (2) hai điều kiện tương đương với tính chất R vành catenary phổ dụng tất thớ hình thức R Cohen-Macaulay Mục tiêu luận văn chứng minh lại kết L T Nhàn P H Quý: Định lý Các điều kiện sau tương đương: (i) R catenary phổ dụng thớ hình thức Cohen-Macaulay; i−dim(R/p) (ii) AttRp HpRp (Mp ) = {qRp | q ∈ AttR Hmi (M ), q ⊆ p} với R-môđun M hữu hạn sinh, số nguyên i ≥ p ∈ Spec R; S b pR) b với R-môđun M hữu (iii) AttRb Hmi (M ) = AttRb (R/ i (M ) p∈AttR Hm hạn sinh số nguyên i ≥ Luận văn gồm chương Phần đầu Chương nhắc lại công thức chuyển dịch tập iđêan nguyên tố liên kết qua địa phương hóa qua đầy đủ hóa Phần trình bày số vấn đề tiêu chuẩn Artin Melkersson [Mel], tập iđêan nguyên tố gắn kết môđun đối đồng điều địa phương Chương chương luận văn, trình bày hệ tham số, lớp vành đặc biệt, số bổ đề liên quan chứng minh Định lý Chương Kiến thức chuẩn bị Trong suốt luận văn này, ta giả thiết (R, m) vành giao hoán địa phương Noether Cho M R-môđun hữu hạn sinh với dim M = d Cho A R-môđun Artin L R-môđun (không thiết hữu hạn sinh b M c đầy đủ R M theo tơpơ hay Artin) Kí hiệu R m-adic Ta kí hiệu I iđêan tùy ý R Var(I) tập iđêan nguyên tố R chứa I 1.1 Tập iđêan nguyên tố liên kết qua địa phương hóa đầy đủ hóa Trong tiết ta nhắc lại công thức chuyển dịch tập iđêan nguyên tố liên kết R-môđun hữu hạn sinh M qua địa phương hóa qua đầy đủ hóa Các kết tiết tham khảo từ [Mat] [S] Định nghĩa 1.1.1 Một iđêan nguyên tố p R gọi iđêan nguyên tố liên kết M tồn phần tử x ∈ M cho AnnR (x) = p Tập iđêan nguyên tố liên kết M kí hiệu AssR (M ) Sau số tính chất tập iđêan nguyên tố liên kết Tính chất 1.1.2 (i) Cho p ∈ Spec(R) Khi p ∈ AssR (M ) M chứa môđun đẳng cấu với R/p (ii) Cho p phần tử tối đại tập iđêan có dạng AnnR (x) 6= x ∈ M Khi p ∈ AssR (M ) Vì thế, M 6= AssR (M ) 6= ∅ (iii) Đặt ZD(M ) = {a ∈ R | tồn m 6= 0, m ∈ M cho am = 0} Khi tập ZD(M ) ước khơng M hợp iđêan nguyên tố liên kết M (iv) Cho → M ′ → M → M ′′ → dãy khớp R-mơđun Khi AssR M ′ ⊆ AssR M ⊆ AssR M ′ ∪ AssR M ′′ (v) AssR (M ) ⊆ SuppR (M ) phần tử tối tiểu SuppR (M ) thuộc AssR (M ) (vi) Nếu M R-môđun hữu hạn sinh AssR (M ) tập hữu hạn Hơn AssR (M ) ⊆ Var(AnnR M ) Vì Rad(AnnR M ) giao iđêan nguyên tố liên kết M (vii) Với S tập đóng nhân R AssS −1 R (S −1 M ) = {S −1 q | q ∈ AssR M, q ∩ S = ∅} Cho p ∈ Spec(R), suy S = R\p tập đóng nhân Ta kí hiệu Rp := S −1 R Mp := S −1 M Khi ta có tính chất chuyển dịch tập iđêan nguyên tố liên kết qua địa phương hóa sau Mệnh đề 1.1.3 AssRp (Mp ) = {qRp | q ∈ AssR M, q ⊆ p} Kết tính chất chuyển dịch tập iđêan nguyên tố liên kết qua đầy đủ hóa Nhắc lại rằng, dãy (xn ) ⊂ R gọi dãy Côsi theo tôpô m-adic với k ∈ N cho trước, tồn n0 ∈ N cho xn − xm ∈ mk , với m, n ≥ n0 Dãy (xn ) ⊂ R gọi dãy không với k ∈ N cho trước tồn n0 ∈ N cho xn ∈ mk ,với n ≥ n0 Ta trang bị quan hệ tương đương tập dãy Côsi sau : Hai dãy Côsi (xn ), (yn ) gọi tương đương dãy (xn − yn ) dãy không Kí b tập lớp tương đương dãy Cơsi Chú ý tổng hiệu R tích hai dãy Côsi dãy Côsi, quy tắc cộng (xn ) + (yn ) = (xn + yn ) quy tắc nhân (xn )(yn ) = (xn yn ) không phụ thuộc vào cách chọn đại b diện lớp tương đương Vì phép tốn R b làm thành vành Noether địa phương với iđêan tối với phép toán R b Vành R b vừa xây dựng gọi vành đầy đủ theo đại mR tôpô m-adic R Bằng cách tương tự ta có khái niệm mơđun đầy đủ theo b Nhưng ý tôpô m-adic cho R-môđun L tùy ý kí hiệu L b ∈ Spec(R) với p ∈ Spec(R) chưa có pR Mệnh đề 1.1.4 Các phát biểu sau c= (i) AssRb M S p∈AssR M b pR) b AssRb (R/ c} (ii) AssR M = {P ∩ R | P ∈ AssRb M b đồng cấu tự nhiên R b phẳng Chứng minh (i) Vì f : R → R R nên theo [Mat, Định lý 23.2(ii)] ta có b = AssRb (M ⊗ R) [ p∈AssR M b pR) b AssRb (R/ c nên khẳng định (i) chứng minh b∼ Hơn M ⊗ R =M b → Spec(R) ánh xạ cảm sinh f , tức (ii) Gọi f a : Spec(R) b Vì f ánh xạ phẳng f a (P) = f −1 (P) := P ∩ R với P ∈ Spec(R) hoàn toàn nên theo [Mat, Định lý 7.3(i)], f a toàn ánh Áp dụng [Mat, Định lý 23.2](ii) ta có