Đồ án kỹ thuật_con lắc ngược
Chương 1: Giới thiệu Trang 1 Chương 1 GIỚI THIỆU Đặt vấn đề 1.1. Kỹ thuật thiết kế hệ thống điều khiển hiện đại dựa trên miền thời gian. Mô tả toán học dùng để phân tích và thiết kế hệ thống là phương trình trạng thái. Mô hình không gian trạng thái có ưu điểm là mô tả được đặc tính động học bên trong hệ thống (các biến trạng thái) và có thể dễ dàng áp dụng cho hệ MIMO và hệ thống biến đổi theo thời gian. Lý thuyết điều khiển hiện đại ban đầu được phát triển chủ yếu cho hệ tuyến tính, sau đó được mở rộng cho hệ phi tuyến bằng cách sử dụng lý thuyết của Lyapunov. Bộ điều khiển được sử dụng chủ yếu trong thiết kế hệ thống điều khiển hiện đại là bộ điều khiển hồi tiếp trạng thái. Tùy theo cách tính vector hồi tiếp trạng thái mà ta có phương pháp phân bố cực, điều khiển tối ưu, điều khiển bền vững Với sự phát triển của lý thuyết điều khiển số và hệ thống rời rạc, lý thuyết điều khiển hiện đại rất thích hợp để thiết kế các bộ điều khiển là các chương trình phần mềm chạy trên vi xử lý và máy tính số. Điều này cho phép thực thi được các bộ điều khiển có đặc tính động phức tạp hơn cũng như hiệu quả hơn so với các bộ điều khiển đơn giản như PID hay sớm trễ pha trong lý thuyết cổ điển. Trong ba thập niên gần đây, lĩnh vực nghiên cứu về robot ứng dụng điều khiển bằng lý thuyết điều khiển hiện đại đã có những bước tiến vượt bậc cả về lý thuyết và ứng dụng. Nhiều nghiên cứu robot điều khiển bằng phương pháp điều khiển mờ, điều khiển LQR… đã được thiết kế cho các mục đích ứng dụng khác nhau. Trong đó phần lớn cánh tay robot được sử dụng trong lĩnh vực điều khiển robot như lắp đặc IC vào bo mạch, hàn và sơn khung xe trên những dây chuyền láp ráp, kiểm tra và sửa chữa cấu trúc trong lò phản ứng hạt nhân, thám hiểm dưới biển và thăm dò dưới lòng đất đòi hỏi những sự chính xác cao.Lĩnh vực của robot rất rộng từ những việc đơn giản như tháo lắp thiết bị điều khiển đến những việc phức tạp đòi hỏi sự an toàn chính xác trong môi trường khắc nghiệt như kiểm tra độ phóng xạ, thám hiểm vũ trụ… đòi hỏi phải ứng dụng những lý thuyết mới để tăng cường sự chính xác, giảm sai số. Chương 1: Giới thiệu Trang 2 Sự phát triển gần đây của lý thuyết điều khiển hiện đại là trong nhiều lĩnh vực điểu khiển tối ưu của các hệ thống ngẫu nhiên và tiền định. Những robot gần đây áp dụng lý thuyết điều khiển hiện đại vào ngay cả những ngành kỹ thuật như: sinh học, y học… Con lắc ngược là loại robot ứng dụng một trong những vấn đề quan trọng lý thuyết điều khiển và được đề cập nhiều trong các tài liệu về điều khiển. Mô hình thực tế con lắc ngược có thể kiểm chứng lại các lý thuyết điều khiển như PID, Fuzzy, Neural Network, các lý thuyết điều khiển hiện đại… Tuy nhiên con lắc ngược cũng đặt ra nhiều thách thức đối với lý thuyết điều khiển cũng như các thiết bị điều khiển chúng. Vì đây là hệ thống phi tuyến nên vấn đề điều khiển con lắc ổn định gặp nhiều khó khăn. Họ C28x DSP là họ mới nhất của dòng TMS320C2000 DSP. Chương trình của C28x tương thích với họ 24x/240x DSP. Với khả năng 32 x 32 – bit MAC của họ C28x và khả năng xử lý 64 – bit, cho phép C28x trở thành sự lựa chọn cho những ứng dụng đòi hỏi những nhân điều khiển foating – point. Với tốc độ xử lý cao cho phép chúng ta nhúng các giải thuật điều khiển như PID, Fuzzy, LQR, Neural … DSP có điểm thuận lợi để nhúng các giải thuật là chúng ta có thể viết các giải thuật này trên Matlap và CCS sẽ liên kết với Matlap để nhúng các giải thuật này xuống DSP. DSP TMS320F2812 xử lí 32 bit và hoạt động ở 150Mhz. Với Bộ nhớ là 18K words on chip RAM và 128K words on chip FLASH memory.DSP TMS320F2812 hỗ trợ ngoại vi với: 12 kênh PWM, Hai khối sự kiện EVA và EVB hỗ trợ đọc tín hiệu từ hai Encoder, 16 kênh ngõ vào ADC với thanh ghi 12 bit, hỗ trợ truyền thông SCI, SPI, CAN, McBSP.Với những thuận lợi như đã nêu ở trên, nhóm đã tiến hành tìm hiểu về DSP TMS320F28x và tiến hành thiết kế bộ điều khiển mờ và bộ điều khiển LQR hồi tiếp về biến vị trí để con lắc ngược có thể đứng ổn định hơn. Vì vậy nhóm đã thực hiện đề tài: “Nghiên cứu và điều khiển mô hình con lắc ngược quay”. Tầm quan trọng của đề tài và ý nghĩa thực tiễn của đề tài 1.2. Hệ thống con lắc ngược là hệ thống phức tạp có tính phi tuyến cao và không ổn định. Các vấn đề điều khiển liên quan đến hệ thống này bao gồm thiết kế bộ điều khiển Swing-up, thiết kế bộ điều khiển giữ cân bằng con lắc…là những vấn đề rất thú vị và là thách thức của lĩnh vực điều khiển tự động. Bên cạnh đó, nếu hệ thống được chế tạo với độ chính xác và tin cậy cao thì đây là mô hình lý tưởng để thực hiện các thí nghiệm thu thập dữ liệu, từ đó có thể sử dụng các thuật toán nhận dạng để nhận dạng mô hình của hệ thống con lắc ngược. Chương 1: Giới thiệu Trang 3 Hiện nay có rất nhiều nhà nghiên cứu đã sử dụng các thuật toán điều khiển khác nhau để điều khiển hệ thống con lắc như thuật toán điều khiển PID, điều khiển trượt, thuật toán điều khiển tối ưu LQR và điều khiển logic mờ Fuzzy đã thu được một số thành công đáng kể. Từ đề tài con lắc ngược có thể phát triển lên để nghiên cứu về các vấn đề như: điều khiển cầu trục Hình 1.a, điều khiển góc tên lửa khi rời bệ phóng Hình 1.b và xe hai bánh tự cân bằng như Hình 1.c. a. Hệ cầu trục b. Điều khiển góc tên lửa c. Xe hai bánh tự cân bằng Hình 1.Các đối tượng điều khiển phức tạp trong thực tế. Mục tiêu của đề tài 1.3. Mục đích của đề tài là khảo sát phương trình động lực học, xây dựng mô hình toán học, mô phỏng đặc tuyến hoạt động của hệ con lắc ngược quay, tổng quan các công trình nghiên cứu về hệ con lắc ngược quay, khảo sát một số phương pháp điều khiển có thể áp dụng cho hệ con lắc ngược quay. Đề tài đi sâu vào nghiên cứu các giải thuật điều khiển sử dụng công nghệ tính toán mềm ứng dụng cho hệ con lắc ngược quay , tiến hành khảo sát tổng hợp thiết kế điều khiển và xây dựng các mô hình mô phỏng của giải thuật điều khiển tính toán mềm ứng dụng vào hệ con lắc ngược, so sánh các kết quả mô phỏng đạt được về đặc tuyến làm việc, thời gian đáp ứng xác lập, sự ổn định của hệ thống rồi ứng dụng phương pháp vào chạy thực tế trên mô hình con lắc. Kết quả mô phỏng sẽ cho chúng ta thấy ứng dụng giải thuật tính toán mềm vào hệ con lắc ngược sẽ giúp chúng ta phân tích được những mặt ưu điểm và mặt khuyết điểm từ đó rút ra phương pháp hợp lý cho hệ con lắc ngược và ứng dụng vào điều khiển. Chương 1: Giới thiệu Trang 4 Dựa và mô hình mô phỏng, tiến hành thiết kế và xây dụng mô hình thực ứng dụng vào hệ con lắc ngược. Khảo sát chi tiết các thành phần cấu tạo nên mô hình thực của hệ con lắc ngược và thiết kế thi công mô hình con lắc ngược quay . Xây dựng được mô hình thực của hệ con lắc ngược có nhúng thuật toán điều khiển sử dụng công nghệ tính toán mềm,giải quyết được những trường hợp nhiễu hệ thống và thực hiện được giải thuật swing-up, giải thuật giữ cân bằng được hệ con lắc ngược ở bất kì vị trí nào. So sánh giữa kết quả lý thuyết và thực tiễn, ta tiến hành kiểm chứng lại vấn đề của công trình rồi xây dụng hướng phát triển của công trình hoàn thiện hơn. Đồng thời, mở rộng phạm vi ứng dụng của giải thuật điều khiển trên tất cả hệ thống thiếu cơ cấu truyền động. Phương pháp nghiên cứu 1.4. Nội dung luận văn này nhằm đi sâu vào nghiên cứu hệ con lắc ngược và tổng hợp các giải pháp điều khiển nó. Xây dựng mô hình mô phỏng hệ con lắc trên một số giải pháp đó bằng phần mềm MATLAB để nghiên cứu đặc tính về đặc tính làm việc, thời gian xác lập giải thuật đưa lên (swing- up) và giải thuật cân bằng hệ con lắc ngược ở vị trí bất kì. Đồng thời, dựa vào kết quả thu thâp được qua quá trình mô phỏng của giải thuật điều khiển, ta tiến hành so sánh đánh giá ưu khuyết điển của các giải thuật mà nhóm đã sử dụng trong luận văn từ đó cải thiện thêm phương pháp điều khiển mô hình con lắc ngược quay. Khảo sát giải thuật giữ cân bằng cho hệ con lắc ngược ở vị trí cân bằng. Điều khiển toàn phương tuyến tính(LQR), điều khiển mờ trực tiếp. Xây dựng giải thuật swing-up cho hệ con lắc ngược, truyền cho con lắc một năng lượng đủ lớn cần thiết để làm cho con lắc ngược chuyển động đến vị trí mong muốn. Thực hiện mô phỏng hệ con lắc ngược bằng giải thuật vừa đề xuất ở trên với tín hiệu điều khiển và vị trí góc đặt khác nhau. Đồng thời thiết kế thi công mô hình thực của hệ con lắc ngược với thông số thích hợp đã chọn được trong lúc mô phỏng mô hình toán của hệ con lắc ngược. Khi đã chọn được thuật toán điều khiển tính toán mềm thích hợp và thi công xong mô hình thực của hệ con lắc ngược, ta tiến hành thiết kế và xây dựng giải thuật điều khiển hệ con lắc ngược có nhúng thuật toán điều khiển tính toán mềm để điều khiển hệ con lắc ngược. Sau đó đem kết quả thu thập được từ việc ứng dụng thực tế kiểm chứng lại kết quả mô phỏng của Chương 1: Giới thiệu Trang 5 thuật toán điều khiển tính toán mềm được chọn ở trên nếu kết quả chưa đúng ta tiến hành hiệu chỉnh thông số của bộ điều khiển và thông số mô hình thực của hệ con lắc ngược cho đến khi kết quả thu được từ việc ứng dụng thực tế gần giống với kết quả mô phỏng của hệ con lắc ngược. Sau đó đề xuất hướng phát triển của luận văn và mở rộng phạm vi ứng dụng của thuật toán điều khiển trong các hệ thống phi tuyến có thuộc tính giống hệ con lắc ngược quay. Nội dung của đề tài 1.5. Nội dung đề tài gồm các chương sau: Chương 1. Giới thiệu. Nội dung chương này sẽ giới thiệu sơ lược về các phương pháp điều khiển hiện đại của hệ thống con lắc ngược quay, tổng quan về các công trình nghiên cứu và mục tiêu của luận văn. Chương 1 cũng đề cập đến phương pháp nghiên cứu của luận văn. Cuối chương này trình bày sơ lược nội dung của luận văn. Chương 2. Cơ sở lý thuyết các phương pháp điều khiển. Trình bày khái quát phương pháp điều khiển được sử dụng trong luận văn là phương pháp điều khiển LQR và phương pháp điều khiển mờ. Chương 2 là nền tảng cơ sở lý thuyết để xây dựng thuật toán điều khiển cho hệ con lắc ngược quay. Chương 3. Nghiên cứu thuật toán điều khiển hệ thống con lắc ngược quay Chương này nghiên cứu mô hình toán học của con lắc ngược quay. Xây dựng mô hình mô phỏng hệ con lắc ngược quay, giải thuật điều khiển swing-up và giải thuật điều khiển cân bằng, ứng dụng mô phỏng trên Simulink của Matlab để kiểm tra các giải thuật điều khiển. Chương 4. Thiết kế và thi công mô hình con lắc ngược quay Chương này trình bày thiết kế phần cứng mô hình con lắc ngược quay, cách nhúng giải thuật điều khiển từ Matlab xuống vi điều khiển điều khiển mô hình con lắc ngược quay, chạy thử nghiệm mô hình và truyền số liệu lên máy để vẽ đồ thị. Chương 5. Kết luận và đánh giá Chương này trình bày về những kết quả đạt được trong luận văn , ưu điểm và nhực điểm của giải thuật điều khiển, những đóng góp và đề xuất hướng phát triển tiếp theo để hoàn thiện và mở rộng của luận văn Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Trang 6 Chương 2 CƠ SỞ LÝ THUYẾT CÁC PHƯƠNG PHÁP ĐIỀU KHIỂN Tổng quan 2.1. Chương này giới thiệu khái quát lý thuyết các phương pháp điều khiển được ứng dụng để điều khiển hệ con lắc ngược như: phương pháp điều khiển LQR, phương pháp điều khiển mờ. Các phương pháp này được sử dụng để điều khiển swing-up và giữ cân bằng hệ con lắc ngược từ vị trí ban đầu cân bằng ổn định hướng xuống đến vị trí cân bằng không ổn định hướng lên. Trong nội dung của luận văn sử dụng phương pháp điều khiển mờ để swing-up và sử dụng phương pháp điều khiển LQR để giữ cân bằng. Quá trình xây dựng mô hình toán học của hệ thống con lắc tuyến tính và phi tuyến, mô phỏng hệ thống trong Simulink Matlab dựa vào phương trình toán học và khảo sát đáp ứng của hệ thống con lắc tuyến tính khi có bộ điều khiển. Phương pháp điều khiển LQR 2.2. Trong phần này chúng ta sẽ xem xét phương pháp xây dựng bài toán tổng hợp các hệ tuyến tính với chỉ tiêu chất lượng dạng toàn phương. 2.2.1. Ổn định Lyapunov đối với hệ thống tuyến tính - Tiêu chuẩn ổn định thứ hai của Lyapunov ( điều kiện đủ ) Xét hệ thống được mô tả bởi phương trình trạng thái : 1 2 3 4 ( , , , )x f x x x x Nếu tìm được một hàm V(x) với mọi biến trạng thái 1 2 , n x x x là một hàm xác định dương, sao cho đạo hàm của nó ( )dV x dt dựa theo phương trình vi phân của chuyển động bị nhiễu cũng là hàm xác định dấu , song trái dấu với hàm V(x) thì chuyển động không bị nhiễu sẽ ổn định tiệm cận . ( ). ( ) 0V x V x : với mọi biến trạng thái x i , 1,i n hệ thống ổn định tiệm cận. Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Trang 7 ( ). ( ) 0V x V x : với mọi biến trạng thái x i , 1,i n hệ thống ổn định . ( ). ( ) 0V x V x : với mọi biến trạng thái x i , 1,i n hệ thống không ổn định. Phương trình Lyapunov Xét hệ tuyến tính mô tả bởi phương trình trạng thái (hệ Autonom): Axx (2.1) Yêu cầu cực tiểu hoá chỉ tiêu chất lượng J : 0 T J x Qxdt (2.2) với Q là ma trận vuông xác định dương . Chọn hàm năng lượng V(x) xác định dương : ( ) T V x x Sx (2.3) trong đó ma trận S là ma trận vuông xác định dương. ( )V x có dạng : ( ) T T T V x x Sx x S x x S x (Ax) T T T Sx x S Ax x S x T T T T x A Sx x SAx x S x ( ) T T x A S SA S x Do V(x) xác định dương, nên để hệ thống ổn định thì ( )V x phải là xác định âm.Ta chọn ( ) T V x x Qx (do Q là ma trận xác định dương nên ( )V x sẽ là xác định âm). ( ) T Q A S SA S Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Trang 8 Điều kiện cần và đủ để trạng thái cân bằng x = 0 ổn định tiệm cận: cho trước bất kỳ một ma trận xác định dương Q và ma trận A ổn định, tồn tại một ma trận xác định dương S thoả mãn phương trình: T A S SA S Q T S A S SA Q (2.4) Phương trình (2.4) được gọi là phương trình Lyapunov. Khi S không thay đổi theo thời gian 0S , ta có phương trình đại số Lyapunov: 0 T A S SA Q (2.5) Chỉ tiêu chất lượng J được tính như sau: 0 0 ( ) ( ) (0) (0) T T T T J x Qxdt x Sx x Sx x Sx Khi tất cả các phần tử của ma trận A âm , ta có ( ) 0x . Do đó : (0) (0) T J x Sx (2.6) 2.2.2. Điều khiển tối ưu hệ tuyến tính với chỉ tiêu chất lượng dạng toàn phương - Phương trình Riccati đối với hệ liên tục Xét hệ thống có tác động ngoài ( u ≠ 0 ): Axx Bu (2.7) Chúng ta cần tìm ma trận K của vector điều khiển tối ưu : ( ) ( )u t Kx t (2.8) thỏa mãn chỉ tiêu chất lượng J đạt giá trị cực tiểu : Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Trang 9 0 ( ) T T J x Qx u Ru dt (2.9) Trong đó: Q là ma trận xác định dương (hoặc bán xác định dương), R là ma trận xác định dương. Chú ý: thành phần thứ hai ở phần bên phải phương trình (2.9) xác định lượngnăng lượng tiêu tốn của tín hiệu điều khiển. Chúng ta sẽ chứng minh luật điều khiển tuyến tính cho bởi phương trình (2.8) là luật điều khiển tối ưu. Khi đó, nếu ma trận K được xác định để tối thiểu hoá chỉ tiêu chất lượng J thì luật điều khiển u(t) sẽ tối ưu với mọi trạng thái ban đầu x(0). Từ (2.7) và (2.8) ta có: Ax ( )x BKx A BK x (2.10) Thay ( ) ( )u t Kx t vào phương trình (2.9): 0 ( ) T T T J x Qx x K RKx dt (2.11) 0 ( ( ) T T x Q K RK xdt Bây giờ ta chọn hàm năng lượng : ( ) T V x x Sx và ( ) 0,V x x (2.12) với S là ma trận vuông xác định dương . ( ) T T T V x x Sx x S x x S x ( ) ( ) T T T T x A BK Sx x S x x S A BK x ( ) ( ) T T x A BK Sx S S A BK x (2.13) Do V(x) xác định dương, nên để hệ thống ổn định thì ( )V x phải là xác định âm. Ta đặt: Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Trang 10 ( ) T T T d V x x Sx x Q K RK x dt (do Q và R là ma trận xác định dương nên ma trận T Q K RK cũng là xác định dương , từ đó ( )V x sẽ là xác định âm). ( ) ( ) T T T T x Q K RK x x A BK Sx S A BK S x ( ) ( ) T T Q K RK A BK Sx S S A BK S (2.14) Theo tiêu chuẩn ổn định thứ hai của Lyapunov, nếu ma trận (A-BK) ổn định thì sẽ tồn tại một ma trận xác định dương S thoả mãn phương trình (2.14). Chỉ tiêu chất lượng bây giờ có thể được xác định như sau: 0 0 ( ) ( ) ( ) (0) (0) T T T T T J x Qx u Qu dt x Sx x Sx x Sx Lưu ý rằng ( ) 0x (0) (0) T J x Sx Đặt T R T T ,phương trình (2.14) trở thành: ( ) ( ) 0 T T T T T A K B S S A BK S Q K T TK Phương trình trên có thể viết lại như sau: 1 1 1 ( ) ( ) 0 T T T T T T T A S SA TK T B S TK T B S SBR B S Q S (2.15) Chỉ tiêu chất lượng J đạt giá trị cực tiểu khi biểu thức: 1 1 ( ) ( ) T T T T T T x TK T B S TK T B S x , đạt giá trị cực tiểu. [...]... là tập cơ sở và là tập rỗng Phép hội, giao và bù là các phép toán cơ bản của tập hợp kinh điển Dựa vào ba phép toán cơ bản này ta có thể thiếp lập được các đồng nhất thức được liệt kê trong Bảng 2.1 Các đồng nhất thức này có thể được xác định nhờ biểu đồ Venn Trang 16 Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Bảng 2.1 Các đồng nhất thức cơ bản của tập kinh điển A A A ( B C ) ... Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Hình 2.5 Các phép toán tập hợp Biểu đồ Venn (a, b, c) Tương ứng với các phép toán tập hợp ban đầu, tập mờ cũng có các phép toán tương tự và ban đầu được định nghĩa trong bài báo của Zadeh Định nghĩa 2.8 Phép chứa trong hay tập con Tập mờ A chứa trong tập mờ B (hay tương đương, A là tập con của B; hoặc A nhỏ hơn hoặc bằng B) nếu và chỉ nếu A ( x) ... S ( A ( x), B ( x)) A ( x) B ( x) (2.45) Trong đó là phép toán hai ngôi đối với hàm S Các phép toán hội mờ này được xem như là các phép toán T – conorm (S – norm) thỏa mãn các yêu cầu cơ bản sau Trang 23 Chương 2: Cơ sở lý thuyết các phương pháp điều khiển Định nghĩa 2.20 T – conorm (S – norm) Một phép toán S – norm là hàm hai ngôi thỏa mãn: S (1,1) 1, S (0, a ) S (a ,0) a S... (2.41) Trong đó * là phép toán hai ngôi đối với hàm T Các phép toán giao mờ này được xem như là các phép toán T – norm thỏa mãn các yêu cầu cơ bản sau Định nghĩa 2.19 T – norm Một phép toán T – norm là hàm hai ngôi thỏa mãn T (0, 0) 0, T (a ,1) T (1, a ) a T (a , b) T (c, d ) if a c and b d T (a , b) T (b, a ) T (a , T (b, c) T (T (a, b ), c) (2.42) Bốn phép toán T – norm thường dùng là:... với 4 phép toán T –norm, ta có 4 phép toán S – norm sau: Maximum : S max (a , b) max(a, b) a b Algebraic product : S ap (a, b) a b ab Bounded product : Sbp (a, b) min(1, (a b )) 1 (a b) Drastic product : a, if b 0 S dp (a, b) b, if a 0 1, if a, b 0 (2.47) Hình 2.12 Bốn phép toán S – norm Hàng đầu tiên trong Hình 2.13 mô tả biểu đồ bề mặt bốn phép toán S – norm... tập kinh điển A Mặc dù các tập hợp kinh điển phù hợp cho rất nhiều ứng dụng và đã chứng minh là công cụ quan trọng cho toán học và khoa học máy tính, nhưng nó không phản ánh được khái niệm và cách nghĩ của con người là trừu tượng và không chính xác Như một ví dụ minh họa, về mặt toán học ta có thể mô tả tập hợp người cao bao gồm những người có chiều cao lớn hơn 6 ft (1,829 m) được biểu diễn bằng phương... thể vẽ biểu đồ bề mặt của bốn phép toán T – norm này như là hàm của a và b, xem hàng đầu tiên của Hình 2.14 Hàng thứ hai là các bề mặt hàm thành viên hai chiều tương ứng khi a A ( x) trapzoid ( x;3,8,12,17) và b B ( y ) trapzoid ( y;3,8,12,17) , các hàm thành viên hai chiều này có thể xem như là tích Decart của A và B dưới bốn phép toán T – norm khác nhau Hình 2.11 Bốn phép toán T – norm... rộng miền rõ của các biểu thức toán học sang miền mờ Thủ tục này mở rộng một ánh xạ một – một thông thường của một hàm f(.) thành một ánh xạ giữa các tập mờ Nói chính xác hơn, giả sử f là một hàm từ X sang Y và A là tập mờ trên X được định nghĩa: A A ( x1 ) / x1 A ( x2 ) / x2 A ( xn ) / xn Khi đó nguyên lý mở rộng phát biểu rằng: ảnh của tập mờ A dưới ánh xạ f(.) có thể được biểu thị... biến đổi ngõ ra mờ thành giá trị rõ Một ví dụ về hệ mờ không có khối mờ hóa là hệ thống hai đầu vào – hai luật như Hình 2.21 Hình 2.18 Sơ đồ khối bộ điều khiển mờ Với đầu vào/ra là rõ, hệ mờ thực hiện một ánh xạ phi tuyến từ không gian đầu vào đến không gian đầu ra Ánh xạ này được thực hiện bởi các quy tắc mờ if – then Trang 34 Chương 2: Cơ sở lý thuyết các phương pháp điều khiển 2.3.3.1 Mô hình mờ Mamdani... “50 tuổi” Định nghĩa 2.7 Tập mờ lồi (Convexity) Tập mờ A là lồi nếu và chỉ nếu với bất kỳ x1 , x2 X và với mọi [0,1] , A ( x1 (1 ) x2 ) min{ A ( x1 ), A ( x2 )} (2.30) Có nghĩa là hàm thành viên của nó đơn điệu tăng, hoặc đơn điệu giảm, hoặc đơn điệu tăng sau đó đơn điệu giảm Hình 2.3 Hai hàm thành viên lồi (a); không lồi (b) 2.3.1.1.2 Các phép toán trên tập mờ Cho A, B, C là các tập . xây dựng thuật toán điều khiển cho hệ con lắc ngược quay. Chương 3. Nghiên cứu thuật toán điều khiển hệ thống con lắc ngược quay Chương này nghiên cứu mô hình toán học của con lắc ngược quay hình thực của hệ con lắc ngược, ta tiến hành thiết kế và xây dựng giải thuật điều khiển hệ con lắc ngược có nhúng thuật toán điều khiển tính toán mềm để điều khiển hệ con lắc ngược. Sau đó đem. thực của hệ con lắc ngược và thiết kế thi công mô hình con lắc ngược quay . Xây dựng được mô hình thực của hệ con lắc ngược có nhúng thuật toán điều khiển sử dụng công nghệ tính toán mềm,giải