LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1),D(−1; 3;[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(5; 9; 5) C C(1; 5; 3) D C(−3; 1; 1) Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D −z x y Câu Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D 1 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B − ln − C ln − D ln + 2 2 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C a D A 2 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a 15 a a B C D A a 15 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 3 Câu Thể tích khối lập phương có cạnh 3a là: A 8a3 B 2a3 C 27a3 D 3a3 x+1 y z−2 Câu 10 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y + z − = B (P) : x − 2y + = C (P) : x − 2z + = D (P) : y − z + = Câu 11 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C + log5 a D − log5 a Câu 12 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 A V = B V = C V = 32π D V = 5π 5 Trang 1/5 Mã đề 001 Câu 13 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 26 32 B 10 C D 3 Câu 14 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D A Câu 15 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 16 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 84 B S = 1979 C S = 96 D S = 364 Câu 17 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (0; −2) C (0; 2) D (−2; 0) = y−1 = Câu 18 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 31 B C D 113 z−1 −3 Gọi (P) mặt Câu 19 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 20 Tích tất nghiệm phương trình ln2 x + ln x − = B −2 C e12 D −3 A e13 Câu 21 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 22 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = 1x C y′ = lnx3 A y′ = x ln1 D y′ = − x ln1 Câu 23 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6) Câu 24 Đồ thị hàm số có dạng đường cong hình bên? A y = x4 − 3x2 + B y = x2 − 4x + C y = x3 − 3x − D y = x−3 x−1 Câu 25 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (3; 4) C (2; 3) D (4; 5) Câu 26 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; 2; −3) C (1; −2; 3) D (−1; 2; 3) Câu 28 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (3; +∞) C (1; 3) D (0; 2) Trang 2/5 Mã đề 001 Câu 29 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πr2 l C πrl D πrl2 3 Câu 30 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 2x + Câu 31 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 A y = − B y = C y = D y = − 3 3 Câu 32 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 90◦ C 45◦ D 60◦ Câu 33 Đồ thị hàm số có dạng đường cong hình bên? x−3 C y = x2 − 4x + D y = x−1 −2 − 3i Câu 34 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ C max |z| = D max |z| = A max |z| = B max |z| = A y = x3 − 3x − B y = x4 − 3x2 + Câu 35 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu 36 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 2π C 4π D π Câu 37 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B 4π C 3π D π Câu 38 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu 39 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu 40 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 √ Câu 41 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 42 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = C |z| = 33 D |z| = 10 Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 6a3 D 4a3 Trang 3/5 Mã đề 001 Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B ln C − ln D Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 25 C 29 D 23 Câu 46 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx C R3 |x2 − 2x|dx = − D R3 2 R2 (x2 − 2x)dx + R2 (x2 − 2x)dx |x − 2x|dx = |x − 2x|dx − R3 R3 |x2 − 2x|dx Câu 47 Chọn mệnh đề mệnh đề sau: A R x dx =5 x + C C R e2x dx = e2x + C R (2x + 1)2 dx = D R sin xdx = cos x + C Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 3π ln + B 6π ln + 5 (2x + 1)3 +C B cos x π F(− ) = π Khi giá trị sin x + cos x C ln + 6π D 6π Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ A B C D Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + n 2mn + 2n + C log2 2250 = m A log2 2250 = 2mn + n + n 2mn + n + D log2 2250 = n B log2 2250 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001