LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 0 và a , 1 Giá trị của alog√a3 bằng? A √ 3 B 6 C 9 D 3 Câu 2 Đường cong t[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √ Cho a > a , Giá trị a A B log √a bằng? C Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + √ Câu Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = C y′ = (3x − 1) ln 3x − ln 3x − ln D D y = x4 + 2x2 + D y′ = (3x − 1) ln Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B Không tồn m C m < D m < 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D √ Câu Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = B (x + 4)2 + (y − 8)2 = 20 √ C (x − 4)2 + (y + 8)2 = 20 D (x + 4)2 + (y − 8)2 = Câu 10 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; −1) B M(− ; ; −1) C M( ; ; −1) D M(− ; ; 2) 4 4 Câu 11 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 3a3 C 27a3 D 2a3 Câu 12 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 27 6 27 A z = − − i B z = + i C z = − i D z = − + i 5 5 5 5 Câu 13 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C 2i D −4 Trang 1/5 Mã đề 001 Câu 14 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B −4 < m ≤ −3 C −4 ≤ m < −3 D m > −4 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x + 2y + 2z + = B 3x − 4y + 6z + 34 = C −x + 2y + 2z + = D x − 2y − 2z − = Câu 16 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 1) A → B → C → D → Câu 17 Tích tất nghiệm phương trình ln2 x + ln x − = C e13 D −2 A −3 B e12 Câu 18 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 33 a C 2a D 3 a A a Gọi A B hai điểm thuộc Câu 19 Cho khối nón có đình S , chiều cao thể tích 800π đường trịn đáy cho AB = 12, đường tròn đáy đến mặt √ phẳng (S AB) √ khoảng cách từ tâm A 24 B D C 24 Câu 20 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D 38 Câu 21 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; 6) D (7; −6) Câu 22 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (4; 5) C (3; 4) D (2; 3) Câu 23 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (3; +∞) D (0; 2) Câu 24 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) Câu 25 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln a C ln 6a2 A ln 32 D ln 32 Câu 26 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = sinx + x2 + C R R x2 C f (x) = −sinx + x2 + C + C D f (x) = −sinx + Câu 27 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (−1; 2) C (0; 1) D (1; 0) Câu 28 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 60◦ D 30◦ Câu 29 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B (−∞; 1] C (1; +∞) D [1; +∞) Trang 2/5 Mã đề 001 Câu 30 Nếu A R2 R2 f (x) = [ f (x) − 2] B C Câu 31 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C −77 D −2 D 36 Câu 32 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B C D A 2 Câu 33 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (3; +∞) C (−∞; 1) D (1; 3) z+i+1 số ảo? Câu 34 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường tròn B Một Parabol C Một Elip D Một đường thẳng Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = + B w = 1√+ 27i hoặcw =√1 − 27i √ 27 hoặcw = −√ 27 C w = − 27 − i hoặcw = − 27 + i D w = 27 − i hoặcw = 27 + i Câu 36 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C −1 D Câu 37 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C 3π D π Câu 38 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 39 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 Câu 40 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = √ Câu 41 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B |z| > C |z| < D ≤ |z| ≤ 2 2 Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Trang 3/5 Mã đề 001 Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (−3; 0) D (1; 5) −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (1; 13; 16) A 2→ −u + 3→ −v = (3; 14; 16) B 2→ −u + 3→ −v = (1; 14; 15) C 2→ −u + 3→ −v = (2; 14; 14) D 2→ Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 6π C 32π D 33π Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ πa2 17 A √ πa2 17 B √ πa2 17 C √ πa2 15 D Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ a 15 A √ 3a B √ 3a 30 C 10 √ 3a D √ 2x − x2 + Câu 50 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001