LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào? A y = x4 + 1 B y = −x4 + 2x2[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + D y = −x4 + R Câu R2 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 300 C 600 D 450 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Đạo hàm hàm số y = log √2 3x − là: 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C 3 Câu Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 10 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m ≤ −3 B −4 < m < −3 C m > −4 D −4 ≤ m < −3 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x − 2y − 2z − = B x + 2y + 2z + = C −x + 2y + 2z + = D 3x − 4y + 6z + 34 = − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 12 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ − √ → − − → − → −a = A → c = B b ⊥→ a C → D b ⊥−c Trang 1/5 Mã đề 001 Câu 13 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a Câu 14 Biết R3 f (x)dx = A R3 g(x)dx = Khi B −2 R3 D + log5 a [ f (x) + g(x)]dx C D √ Câu 15 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x + 4)2 + (y − 8)2 = 20 C (x − 4)2 + (y + 8)2 = 20 √ B (x + 4)2 + (y − 8)2 = √5 D (x − 4)2 + (y + 8)2 = Câu 16 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 1 B C D A 210 210 105 21 Câu 17 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B 17 C 35 D 354 A 35 Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 19 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = π1 xπ−1 Câu 20 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường tròn Tâm đường trịn có tọa độ A (0; −2) B (0; 2) C (−2; 0) D (2; 0) Câu 21 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 11 B C D 12 Câu 22 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu R23 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 24 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = − x ln1 B y′ = 1x C y′ = lnx3 −16 Câu 25 Có số nguyên x thỏa mãn log3 x343 < log7 A 186 B 184 C 92 D y′ = x ln x2 −16 ? 27 D 193 Câu 26 Đồ thị hàm số có dạng đường cong hình bên? A y = x2 − 4x + B y = x4 − 3x2 + C y = x3 − 3x − R dx = F(x) + C Khẳng định đúng? x A F ′ (x) = − B F ′ (x) = C F ′ (x) = lnx x x D y = x−3 x−1 Câu 27 Cho D F ′ (x) = x Trang 2/5 Mã đề 001 Câu 28 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 49 C 89 D 90 Câu 29 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = xπ−1 C y′ = πxπ−1 π D y′ = πxπ Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n4 = (1; 1; −1) Câu 31 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 32 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 + C A f (x) = −sinx + x2 + C B f (x) = sinx + R R x2 C f (x) = sinx + x2 + C D f (x) = −sinx + + C Câu 33 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Câu 34 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 4π C π D 2π Câu 35 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C D 5π A 25π B Câu 36 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D 1+i Câu 37 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 15 A S = B S = C S = D S = 2 Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x − 1)2 + (y − 4)2 = 125 2 C (x + 1) + (y − 2) = 125 D (x − 5)2 + (y − 4)2 = 125 Câu 39 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 z Câu 40 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Parabol C Hai đường thẳng D Một đường thẳng Câu 42 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = A max |z| = B max |z| = C max |z| = √ 2, tìm max |z| D max |z| = Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m < −2 D m > m < − Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = 2πRl + 2πR2 C S = πRh + πR2 D S = πRl + πR2 Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 a 15 3a B C D A 10 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 B C D A 4 4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001