Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
285,5 KB
Nội dung
TRUỜNG TH SỐ 01 ÂN NGHĨA TỔ: KHỐI 5 oooo GV thực hiện: NGUYEN THANH LONG CHUYÊN ĐỀBỒIDƯỠNGHỌCSINHGIỎITOÁN TIỂU HỌC A- PHẦN MỞ ĐẦU: Đối với môn toán ở bậc tiểuhọc thật là đa dạng, có rất nhiều loại toán khác nhau. Để có thể cung cấp tốt kiến thức cho HS một cách chắc chắn. GV cần nắm một số dạng toán và cách giải của dạng toán ấy. Bản thân cũng là một GV đứng lớp, tôi không dám “Múa rìu qua mắt thợ”. Tuy nhiên, phần chuyênđề này ít nhiều gì cũng góp phần cho các thầy, cô giáo dù có trực tiếp giảng dạy hay không trực tiếp giảng dạy vẫn có cơ hội ôn lại. Nếu nắm chắc các dạng toán này, tôi tin rằng các thầy, cô sẽ giảng giải, hướng dẫn các em HS khá, giỏidể hiểu hơn và đạt hiệu quả hơn. B-NỘI DUNG CHÍNH: Chuyênđề này đề cập đến 22 loại toán khác nhau, được chia làm 4 phần. I/ Phần 1: Tám loại toán vế “Số và các phép tính số học”. 1) Các bài toán về cấu tạo số và chữ số: Phần này chủ yếu đề cập đến việc giải toán bằng cách dùng các chữ cái a, b, c … để biểu thị các chữ số trong một số. Thực chất của của các phép biến đổi đối với các đẳng thức chữ ở đây là các phép biến đổi tương đương trong đại số song đã được “Tiểu học hoá” bằng các cách diễn đạt thích hợp. Ngoài ra còn có các bài tập khác liên quan đến` qui tắc viết số theo vị trí trong hệ đếm thập phân và liên quan đến chữ số trong một số hoặc dãy số. Ví dụ 1: Tìm một số có hai chữ số biết rằng khi viết thêm 1 vào đằng sau số đó thì sẽ được một số lớn hơn số có được khi ta viết thêm 1 vào đằng trước số đó 36 đơn vị. Cách 1: Gọi số phải tìm là ab , ta có: a b 1 * Hàng đơn vị: 11 – b = 6 vậy b = 5 (nhớ 1) 1 a b * Hàng chục: 5 – ( a + 1 ) = 3 Vậy a = 1 36 Nhớ Vậy: 2 số phải tìm ab = 15 Cách 2: Gọi số phải tìm là ab, ta có: ab1 = ab x 10 + 1 1ab = 100 + ab Vậy: ab1 - 1ab = (ab x 10 + 1) - (100 + ab) = ab x 10 – ab – 99 = ab x 9 - 99 = 9 x ( ab - 11 ) = 36 Vậy; ab - 11 = 36 : 9 do đó: ab = 4 + 11 = 15 Ví dụ 2: Một cuốn sách có 284 trang. Hỏi để đánh số thứ tự các trang sách của cuốn sách đó ta phải dùng bao nhiêu chữ số. Giải: - Từ trang 1 đến trang 9 cần dùng: 9 chữ số - Từ trang 10 đến trang 99 cần dùng: 90 x 2 = 180 (chữ số) - Từ trang 100 đến trang 284 cần dùng: 185 x 3 = 555 chữ số. Vậy số chữ số cần dùng: 9 + 180 + 555 = 744 chữ số 2) Các bài toán xét tận cùng của số và tính số chẵn, lẻ: Ví dụ 1: Tích của các số lẻ có hai chữ số thì tận cùng bằng chữ số gì? Giải: Tích đó chia hết cho 5 vì có chứa thừa số 5: Tích đó lại là số lẻ gồm toàn số lẻ, Vậy tích đó tận cùng là 5 Ví dụ 2: Tìm chữ số hàng đơn vị của các dãy tính sau: a/ 1 x 3 x 5 x … x 17 x19 + 1 x 2 x 3 x … x 8 x 9 b/ 81 x 63 x 45 x 27 – 37 x 29 x 51 x 12 Giải: a/ Xét P = 1 x 3 x 5 x … x 17 x 19 đây là tích của các số lẻ trong đó có 5 nên P là số lẻ và chia hết cho 5. Vậy P tận cùng là 5 - Chữ số tận cùng của tích Q = 1 x 2 x 3 x … x 8 x 9 là 0 vì trong Q có các thừa số 2 và 5, mà 2 x 5 = 10 Vậy: P + Q có tận cùng là 5 b/ Có Tận cùng là 9 . 3) Các bài toán quan hệ về các phép tính: Ví dụ 1: Hiệu của hai số là 60. Nếu ta cộng thêm 18 đơn vị vào mỗi số thì số lớn sẽ gấp 3 lần số bé. Hãy tìm hai số đó. Giải: Khi cộng thêm 18 đơn vị vào mỗi số thì hiệu của hai số vẫn không thay đổi và bằng 60. Vậy lúc này ta có sơ đồ. Số lớn Số bé 60 Ta có số bé lúc sau: 60 : ( 3 - 1) = 30 Do đó: Số bé lúc đầu: 30 - 18 = 12 Số lớn lúc đầu: 12 + 60 = 72 Ví dụ 2: Một phép chia có thương là 6 và dư là 3. Tổng của số bị chia và số chia, thương và số dư bằng 201, Tìm số bị chia và số chia. Giải: Ta có sơ đồ. Số chia: 3 Số bị chia: 201 Thương: 6 Số dư: 3 Vậy: 6 + 1 = 7 (lần) Số chia: 201 – (3 + 6 + 3) = 189 Số chia: 189 : 7 = 27 ; Số bị chia: 27 x 6 + 3 = 165 4) Các bài toán về tính chất chia hết: Phần này chủ yếu đề cập đến việc vận dụng các dấu hiệu chia hết và các tính chất của phép chia hết để giải một loạt các bài toán rất đa dạng ở tiểu học. Ví dụ 1: Hãy viết thêm hai chữ số vào bên phải số 283 sao cho được một số mới cùng chia hết cho 2, 3 và 5. Giải: Một số cùng chia hết cho 2 và 5 phải có chữ số hàng đơn vị là 0. Vậy chỉ cần tìm chữ số hàng chục là xong. Các chữ số đó là và ta có: 2 + 8 + 3 + X + 0 = 13 + X = 12 + 1 + X Trong đó 12 chia hết cho 3 nên muốn cho số đó chia hết cho 3 thì (1 + X) phải chia hết cho 3. Vậy ta có: 1 + X = 3 X = 2 1 + X = 6 X = 5 1 + X = 9 X = 8 Vậy số phải tìm là: 28320 ; 28350 ; 28380 Ví dụ 2: Tìm tất cả các chữ số có 2 chữ số khi chia hết cho 2 thì dư 1, chia cho 3 thì dư 2, chia cho 5 dư 4. Giải: Nếu số đó đem cộng với 1 thì được 1 số chia hết cho 2, 3 và 5. Số này phải tận cùng là chữ số 0 và chữ số hàng chục phải chia hết cho 3. Các số này chỉ có thể là : 30; 60; 90 Vậy suy ra các số đó là: 30 – 1 = 29 ; 60 – 1 = 59 ; 90 – 1 = 89 5) Các bài toán về điền số, chữ số, dấu phép tính: Ví dụ 1: Thay dấu * bằng chữ số thích hợp. 2 * 6 4 * * 7 a/ * 6 8 b/ 4 * * 6 7 0 * 0 Giải: Hàng đơn vị 6+8 = 14 vậy * = 4 Giải: 4 * : 7 dư 4 vậy (4 * - 4) 7 (nhớ 1) * = 6 - Hàng chục: (* + 6) nhớ 1 là 10 46 : 7 được 6 vậy dấu * ở thương là 6 Vậy * + 6 hay * = 4 vì 66 x 7 = 462 nên ta có: - Hàng trăm: (2 + *) nhớ 1 lá 7 462 7 Vậy 2 + * + 6 hay * = 4 42 66 Ta có: 236 0 468 704 Ví dụ 2: Bảo đó bạn bài toán sau: HỌCHỌCHỌC TẬP TẬP TẬP 19 951 996 Bảo nói “Biết rằng các chữ số khác nhau biểu thị các chữ số khác nhau. Các bạn hãy điền vào các chữ số thích hớp. Đố các Cậu bài toán có thể giải được không?”. Dung nói “được” ; Vinh nói “không” Hỏi ai đúng? Vì sao? Giải: Số HỌCHỌCHỌC chia hết cho 3 vì tổng các chữ số chia hết cho 3 (H + O + C) X 3 chia hết cho 3. Tương tự TẬP TẬP TẬP cũng chia hết cho 3. Thế nhưng 199519961 lại không chia hết cho 3 (vì 1 + 9 + 9 +5 + 1 + 9 + 9 + 6 = 49 không chia hết cho 3. Vậy không thể có được phép trừ đã nêu. 6) Các bài toán về dãy số: Phần này chủ yếu về các bài toán về tính số số hạng, các xác định số hay tổng quát “trong một dãy số”; vì cách tính tổng các số hạng trong một dãy số, trong một cấp số cộng, trong một cấp số nhân đã được “tiểu học hoá”. Ví dụ 1: Điền 4 số hạng nữa vào mỗi dãy số sau: a/ 0, 1, 1, 2, 3, 5, 8, … b/ 1, 4, 10, 19, 34 …. Giải: a/ Dãy số được thành lập theo qui tắc sau: Từ số thứ 3 trở đi, mỗi số đều tổng hai số liền trước nó. Do đó ta chỉ cần thực hiện các phép tính: 8 +5=13; 8 + 13 = 21; 21 + 34 = 55 Vậy dãy số được kéo dài: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 … b/ Kể từ số thứ 3 trở đi, mỗi số đã lớn hơn tổng của 2 số liền ngay trước nó 5 đơn vị, do đó 4 số liên tiếp: 58 ; 97 ; 160 ; 262. Ví dụ 2: Tính nhanh các tổng sau: a/ 1 + 4 + 9 + 16 + ……… + 100. b/ 1 + 2 + 3 + 4 + ………. + 999 + 10000. Giải: a/ Nhận xét: 1 = 1 x 1 25 = 5 x 5 81 = 9 x 9 4 = 2 x 2 36 = 6 x 6 100 = 10 x 10 9 = 3 x 3 49 = 7 x 7 16 = 4 x 4 64 = 8 x 8 Vậy tổng được viết đầy đủ: 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100. = (1 + 9) + (4 + 16) + 25 + (36 + 64) + (49 + 81) + 100 = 10 + 20 + 25 + 100 + 130 + 100 = 385 b/ Tổng đã cho bằng: (1 + 100) + (2 + 999) + (3 + 998) + … + (500 + 501) = 101 + 1001 + 1001 + … + 1001 500 số hạng 1001 = 1001 x 500 = 500500 7) Các bài toán về phân số: Phần này được viết trên cơ sở nâng cao, các kiến thức về “phân số” và các phép tính về phân số. Ví dụ 1: So sánh phân số sau không qui đồng. a/ 25 17 và 37 29 b/ 18 12 và 17 13 Giải: a/ Vì 25 17 = 1 - 25 8 ; 37 29 = 1 - 37 8 Mà 25 8 > 37 8 nên 25 17 < 37 29 b/ Ta có: 18 12 < 17 12 < 17 13 18 12 < 17 13 Ví dụ 2: Cho phân số 26 14 . Hãy tìm một số nào đó để khi cùng thêm số đó vào tử và mẫu của phân số đã cho thì được một phân số mới có giá trị bằng phân số 9 6 . Giải: Hiện của mẫu và tử là: 26 – 14 = 12. Hiệu này không đổi khi cùng cộng thêm một số vào cả tử và mẫu. Vậy với phân số mới ta có sơ đồ: Tử số 12 Mẫu số - Tử số của phân số mới là: 12 : (9 – 6) x 6 = 24 Vậy: Số phải tìm để cộng thêm: 24 – 14 = 10 8) Các bài toán về tỉ số và tỉ số phần trăm. Ví dụ 1: Trước đây 8 năm thì tỉ số giữa tuổi con và tuổi mẹ là 4 1 . Hiện nay tỉ số đó là 5 2 . Tính tuổi mẹ hiện nay? Giải: Ta có: 4 1 = 5 2 Suy ra: - Nếu tuổi con trước đây 2 phần thì tuổi mẹ trước đây là 8 phần (1). - Vậy tuổi con hiện nay là “2 phần cộng 8 tuổi”. - Do đó 2 1 tuổi con hiện nay là “1 phần cộng 4 tuổi”. - Vậy tuổi mẹ hiện nay là “5 phần cộng 20 tuổi” (2) Từ (1) ta có tuổi mẹ hiện nay: “8 phần cộng 8 tuổi” (3) Từ (2) và (3) thấy 3 phần chính là: 20 -8 = 12 (tuổi) Vậy 1 phần: 12 : 3 = 4 (tuổi) tuổi mẹ hiện nay: 8 x 4 + 8 = 40 tuổi. Ví dụ 2: Trong học kỳ I, số họcsinh tiên tiến của lớp 5A chiếm 45% số HS cả lớp, sang học kỳ II số HS tiên tiến của lớp chiếm 47,5% số HS cả lớp. Tính số HS lớp 5A? Giải: Số HS tiên tiến tăng thêm bằng: 47,5% - 45% = 2,5% = 4 1 (số HS cả lớp) Vậy số họcsinh lớp 5A chia hết cho 40 số họcsinh lớp 5A : 40; 80; 120; … Song chỉ có số 40 là phù hợp thực tê. Vậy lớp 5A có: 40 hs II/ PHẦN 2: CÁC LOẠI TOÁN ĐIỂN HÌNH Dạng toán này được dạy chính thức trong chương trình tiểuhọc (từ tuần 9 đến tuần 11) 9) Tìm số trung bình cộng; với cấu trúc và cách giải. n 1 (a 1 + a 2 + a 3 + … + a n ) hay (a 1 + a 2 + a 3 + … + a n ) : n . Ví dụ 1: Trung bình cộng của 2 số là 75. Nếu thêm chữ số 0 vào bên phải số thứ hai thì được số thứ nhất. Nếu gấp 4 lần số thứ hai thì được số thứ ba. Tìm ba số đó? Giải: Theo đề bài thì ta có số thứ nhất gấp 10 lần số thứ 2.số thứ 3 gấp 4 lần số thứ hai và tổng của 3 số là 75 x 3 = 225 Ta có sơ đồ: - Số thứ hai: x - Số thứ nhất: x x x x x x x x x x 225 - Số thứ ba: x x x x Số thứ hai: 225 : (1 + 4 + 10) = 15 Số thứ nhất: 15 x 10 = 150 Số thứ ba: 15 x 4 = 60 Ví dụ 2: Trung bình cộng của hai số 39. Nếu viết thêm chữ số 7 vào bên trái số thứ nhất thì được số thứ hai. Tìm 2 số đó? Giải: Tổng của hai số: 39 x 2 = 78 Vì số thứ hai hơn số thứ nhất 70 đơn vị nên số thứ nhất là: 2 7078 − = 4 ; số thứ hai: 4 + 70 = 74. 10) Tìm hai số khi biết tổng và tỉ của chúng, với cấu trúc, nêu cách giải: ayx =+ y x = n m Ví dụ 1: An và Bình có 33 viên bi. Biết rằng 3 1 số bi của An bằng 5 2 số bi của Bình. Hỏi mỗi bạn có bao nhiêu viên bi? Giải: Vì 3 1 = 6 2 nên 6 2 số bi của An bằng 5 2 số bi của Bình Vậy nên số bi của Ân gồm 6 phần thì số bi của Bình gồm 5 phần - Số bi của An là: 56 33 + x 6 = 18 (viên) - Số bi của Bình là: 33 – 18 = 15 (viên) Ví dụ 2: Tổng chiều dài của ba tấm vải xanh, trắng, đỏ là 108m. Nếu cắt 7 3 tấm vải xanh, 5 1 tấm vải trắng, 3 1 tấm vải đỏ thì phần còn lại của ba tấm vải bằng nhau. Tìm chiều dài mỗi tấm? Giải: - Số vãi xanh còn lại bằng: 1 - 7 3 = 7 14 (tấm vải xanh) - Số vãi trắng còn lại bằng: 1 - 5 1 = 5 4 (tấm vải trắng) - Số vãi đỏ còn lại bằng: 1 - 3 1 = 3 2 (tấm vải đỏ) = 6 4 tấm vải đỏ Vậy ta có: 7 4 Tấm vải xanh = 5 4 tấm vải trắng = 6 4 tấm vải đỏ Có nghĩa là: Tấm vải xanh 7 phần, tấm vải trắng 5 phần, tấm vải đỏ 6 phần. Một phần sẽ là: 108 (7 + 5 + 6) = 6 (m) - Tấm vải xanh dài: 6 x 7 = 42 (m) - Tấm vải trắng dài: 6 x 5 = 30 (m) - Tấm vải đỏ dài: 6 x 6 = 36 (m) 11) Tìm hai số khi biết hiệu và tỉ của chúng, với các cấu trúc ayx =+ y x = n m Ví dụ 1: An có số bi ít hơn bình 3 lần. Nếu Bình cho An 7 hòn thì số bi của 2 hai bạn bằng nhau. Tính số bi của mỗi bạn lúc đầu? Giải: Lúc đầu Bình có nhiều hơn An: 7 + 7 = 14 (hòn bi) Số bi của An: 14: (3 – 1) = 7 (hòn bi) Số bi của Bình: 7 x 3 = 21 (hòn bi) Ví dụ 2: Hiện nay anh 13 tuổi và em 3 tuổi. Hỏi sau bao nhiêu năm nữa thì tuổi anh gấp 3 lần tuổi em? Giải: Anh luôn luôn hơn em: 13 – 3 = 10 (tuổi) Khi Anh gấp 3 lần tuổi em ta có sơ đồ. Anh Em 10 tuổi Tuổi em lúc đó là: 10 : (3 – 1) = 5 (tuổi) Sau thời gian: 5 – 3 = 2 (tuổi) 12) Tìm hai số khi biết tổng và hiệu của chúng với cấu trúc: ayx =+ byx =− Ví dụ 1: Tổngcủa hai số chẵn là 38. Hãy tìm hai số đó ? Biết rằng giữa chúng có ba số lẻ. Giải: Hiệu của hai số chẵn liên tiếp là 2. Vì ở giữa hai số chẵn có ba số lẻ nên hiệu của hai số chẵn đó là 6 (GV vẽ sơ đồ biểu diễn cho HS thấy) Vậy: - Số bé là: (38 – 6) : 2 = 16 - Số lớn là: 16 + 6 = 22 Ví dụ 2: Tổng các chữ số của một số có hai chữ số bằng 10. Nếu đem thay đổi thứ tự các chữ số thì số đã cho giảm đi 36 đơn vị. Hãy tìm số đó ? Giải: Gọi ab là số phải tìm ta có: a + b = 10 ab - ba = 36 ab - ba = (a x 10 + b) – (b x 10 +a) = a x 9 - b x 9 = (a – b) x 9 = 36 Vậy: a – b = 36 : 9 = 4 Ta có: a + b = 10 a – b = 4 Vậy ta có: a = 2 )410( + = 7 ; b = 10 – 7 = 3 Vậy số phải tìm là 73 13) Toán đại lượng tỉ lệ thuận; cấu trúc: Tóm tắt: a 1 b 1 a 2 x b 1 x = a 2 ? x a 1 Ví dụ 1: Trong 2 ngày với 8 người thì sửa được 64m đường. Vậy trong 5 ngày 9 người sửa thì sửa được bao nhiêu mét đường? (Mức làm mỗi người như nhau) Giải: Tóm tắt: 2 ngày 8 người 64m 5 ngày 9 người ? m Cách 1: Trong 1 ngày 8 người sửa được : 64 : 2 = 32 (m) Trong 5 ngày 8 người sửa được : 32 x 5 = 160 (m) Trong 5 ngày 1 người sửa được : 160 : 8 = 20 (m) Trong 5 ngày 9 người sửa được : 160 + 20 = 180 (m) Cách 2: 1 ngày làm 64 m đường thì cấn: 2 x 8 = 16 (người) 5 ngày 9 người làm. Vậy 1 ngày thì phải: 9 x 5 = 45 (người) 5 ngày 9 người làm sẽ được: 16 4565x = 160 (m). 14) Toán về đại lượng tỉ lệ nghịch: Cấu trúc: Tóm tắt: a 1 b 1 a 1 x b 1 x = a 2 ? x a 2 Ví dụ: Một đơn vị bộ đội chuẩn bị một số gạo đủ ăn cho 50 người, ăn trong 10 ngày. 3 ngày sau đơn vị đó được tăng cường thêm 20 người nữa. Hỏi đơn vị đó gạo ăn trong mấy ngày? Giải: Sau khi đã ăn 3 ngày rồi, số gạo còn lại đủ cho 50 người ăn trong thời gian: 10 – 3 = 7 (ngày) Số người cũ và mới: 50 + 20 = 70 (người) Cùng một số gạo, cho 50 người ăn trong 7 ngày thì cũng như cho 70 người ăn thì hết trong thời gian: 70 750x = 5 (ngày) Vậy số gạo còn thiếu: 7 – 5 = 2 (ngày). * Đây là sáu loại toán dạy chính thức trong chương trình nên theo tôi, các thầy, cô giáo ta tự đọc tìm hiểu lấy dạng cơ bản của chúng trong sách giáo khoa. Ở đây tôi chỉ nêu một số dạng phức tạp dành cho HS khá, giỏi. III/ PHẦN 3: Tiếp theo, tôi xin đề cập đến các loại toán điển hình không được dạy chính thức trong chương học của tiểuhọc mà chỉ được dạy gián tiếp trong lúc luyện thi cuối cấp hoặc bồidưỡng HS giỏi. Tuy nhiên trong các năm trước đây từ năm 2004 – 2005 thì bằng hình thức tự luận thường gặp. 15) TOÁN TRỒNG CÂY: Có cấu trúc b a hoặc b a ± 1 Ví dụ: Người ta trồng cây ở hai bên của một quãng đường dài 1 km, cứ 50m thì trồng một cây. Hỏi tất cả trồng bao nhiêu cây? Biết rằng ở hai đầu đường đều có cây. Giải: 1km = 1000m. Số khoảng cách trong 1000m 1000 : 50 = 20 (khoảng cách) Số cây mỗi bên đường là: 20 + 1 =21 (cây) Số cây ở hai bên đường: 21 x 2 = 42 (cây) Lưu ý: - Nếu có trồng cây ở cả hai đầu đường thì: Số cây = số khoảng cách + 1 - Nếu “trồng cây” trên một đường khép kín thì: Số cây = Số khoảng cách. 16) CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP KHỬ: Trong bài toán có nhiều đại lượng (thông thường là 2 đại lượng) và một đại lượng nào đó có hai giá trị khác nhau. Để giải bài toán này, ta có thể biến đổi hai số cho trước của một đại lượng (bằng cách nhân hoặc chia cho cùng một số) để cho chúng bằng nhau. Sau đó tìm cách khử hai giá trị bằng nhau đó (trừ đi) để dẫn đến bài toán chỉ còn một đại lượng mà ta có thể giải một cách dể dàng. Ví dụ 1: Hôm trước cô Bình mua cho nhà trường 3 lọ mực xanh và 2 lọ mực đen hết 9200 đồng. Hôm sau cô mua 2 lọ mực xanh và 3 lọ mực đen hết 8800 đồng. Tính giá tiền một lọ mực mỗi loại ? Giải: - Gấp 2 lần số lượng mua lần đầu ta có: Mua 6 lọ mực xanh và 4 lọ mực đen hết 9200 x 2 = 18400 (đ) (1) - Gấp 3 lần số lượng mua lần sau. Ta có: Mua 6 lọ mực xanh và 9 lọ mực đen hết 8800 x 3 = 26400 (đ) (2) Ta thấy (2) nhiều hơn (1) là: 9 – 4 = 5 (lọ mực đen) Vậy giá tiền 5 lọ mực đen: 26400 – 18400 = 8000 (đ) Giá tiền một lọ mực đen: 8000 : 5 = 1600 (đ) Giá tiền 2 lọ mực xanh là: 8800 – (1600 x 3) = 4000 (đ) Giá tiền 1 lọ mực xanh: 4000 : 2 = 2000 (đ) Ví dụ 2: Một người mua 10 quả trứng gà và 5 quả trứng vịt hết cả thảy 9500 đ. Tính giá tiền mỗi quả trứng? Biết số tiền mua 5 quả trứng gà nhiều hơn số tiền mua 2 quả trứng vịt là 1600 đồng. 17) CÁC BÀI TOÁN DẠNG THỪA THIẾU: Ví dụ 1: Nam đi mua một số vở ở một cửa hàng, nếu mua loại vở giá 1500 đồng thì thiếu 5000 đồng. Nếu mua loại vở 1000 đồng thì thừa 8000 đồng. Hỏi Nam có bao nhiêu tiền và định mua bao nhiêu quyển vở? Giải: Số tiền mua loại vở 1500 đồng nhiều hơn số tiền mua loại vở 100 đồng: 5000 + 8000 = 13000 (đ) Mỗi quyển vở giá 1500 đồng đắc hơn 1000 đồng 1500 – 1000 = 500 (đ) Vậy số vở Nam định mua. 13000 : 500 = 26 (quyển) Số tiền Nam có: 26 x 1500 – 5000 = 34 9 (đồng) Ví dụ 2: Trong một lớp, nếu xếp 4 HS ngồi một bàn thì thiếu 1 bàn. Nếu xếp 5 HS một bàn thì thừa 2 bàn, Hỏi có bao nhiêu học sinh? Bao nhiêu bàn? Giải: Thiếu 1 bàn tức là dư 4 HS, thừa 2 bàn tức là thiếu 10 HS. Số HS ngồi 1 bàn 5 người nhiều hơn số HS ngồi 1 bàn 4 người: 10 + 4 = 14 (hs) Mỗi bàn 5 HS hơn mỗi bàn 4 HS 1 bàn: Vậy số bàn: 14 : (5 – 4) = 14 (bàn) Số HS của lớp: 4 x 14 x 4 = 60 (hs) 18) CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP GIẢ THIẾT TẠM: Loại toán này không có cấu trúc toánhọc ổn định. Tên gọi giả thiết tạm chỉ gợi lên một phương pháp chứ không gọi là cấu trúc. Ví dụ 1: “Vừa gà vừa chó Bó lại cho tròn Ba mươi sáu con Một chẵn” Tính số gà và chó? Cách 1: Giả sử 36 con đều là gà. Lúc đó 36 con có: 36 x 2 = 72 (chân) Vậy số chân co lên: 100 – 72 = 28 (chân) Vậy số chó là: 28 : 2 = 14 (con) Số gà là : 36 – 14 = 22 (con) Cách 2: Giả sử 36 con đều là chó: Lúc đó 36 con có: 36 x 4 = 144 (chân) Vậy số chân gắn thêm: 144 – 100 = 44 (chân) Vậy số gà là: 44 : 2 = 22 (con) Số gà là : 36 – 22 = 14 (con) Ví dụ 2: 54 người cùng qua sông một lượt bằng hai loại thuyền gồm 7 chiếc: Loại chở 10 người một chuyến, loại chở 6 người một chuyến, Hỏi có bao nhiêu thuyền mỗi chuyến. 19) CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP THẾ. Đây cũng là loại toán mang cấu trúc một hệ phương trình bậc nhất hai ẩn nhưng giải bằng phương pháp thế. Ví dụ1: Đuôi con cá nặng 150 g, đầu con cá nặng bằng đuôi và một nửa thân, thân cá nặng bằng đầu và đuôi. Hỏi con cá nặng bao nhiêu Kg ? Giải: Đầu = Đuôi + 2 1 thân (1) Thân = Đầu + đuôi (2) Từ (1) và (2) ta có: Thân = 2 đuôi + 2 1 thân 2 1 thân = đuôi nên thân = 4 đuôi Thân cá nặng: 250 x 4 = 1000 (g) = 1 (kg) Vậy cả đầu và đuôi nặng: 1 (kg) Cả con cá nặng: 1 + 1 = 2 (kg) [...]... mỗi loại toán, các thầy, cô lưu ý đọc thật kỹ để tìm hiểu cội rể … Nếu cần thì có thể dùng phương pháp Đại số để giải, rồi, sau đó tìm cách “dịch” ra ngôn ngữ tiểuhọc như đã nêu Sau đây tôi xin giói thiệu một số tài liệu để chúng ta tham khảo - Tuyển chọn các bài toán hay và khó lớp 5 (Phạm Thị Minh Tâm) - Các dạng toán bồidưỡng HS tiểuhọc 5 (Nguyễn Văn Nhỏ) - Chuyên đềbồidưỡng HS giỏitoán 4,... 36000 : 8 = 4500 (đồng) Giá 1 gói bánh: 12000 – 4500 = 5700 (đồng) 20) CÁC BÀI TOÁN GIẢI BẰNG PHƯƠNG PHÁP ĐI NGƯỢC TỪ CUỐI Đặc điểm của loại toán này là khi giải người ta thường xuất phát từ những quan hệ được nói đến sau cùng trong bài, để lần lược tính toán ngược lên những quan hệ được nói đến đầu tiên trong đềtoán Loại toán này ta hay dùng sơ đồ đặc biệt gọi là lưu đồ Ví dụ: Có 3 kho gạo với tổng... 30 phút ? Ví dụ 2: Một xe lửa dài 150m vượt qua chiếc cầu dài 450m mất 40 giây a/ Tính vận tốc của xe lửa? b/ Xe lửa đó vượt qua người đi xe đạp mất 25 giây Tính vấn tốc xe đạp? 22) TOÁN HÌNH HỌC - Các yếu tố các hình đã học - Các công thức tính chu vi, diện tích, cạnh, cao, khối, thể tích - Quan hệ tỉ lệ giữa các đại lượng trong hình - Quy tắc cộng, trừ diện tích Ví dụ 1: Cho tam giác ABC vuông ở A... tham khảo - Tuyển chọn các bài toán hay và khó lớp 5 (Phạm Thị Minh Tâm) - Các dạng toán bồidưỡng HS tiểuhọc 5 (Nguyễn Văn Nhỏ) - Chuyên đềbồidưỡng HS giỏitoán 4, 5 (Võ Đại Mau) - 500 bài toán chọn lọc tiểuhọc 5 (Ngô Long Hậu) … Xin chân thành cảm ơn ... đầu: Số gạo kho C lúc sau: Số gạo kho C lúc đầu: 210 : 7 = 30 (tấn) 30 + 20 = 50 (tấn) 30 x 2 = 60 (tấn) 60 + 50 – 20 = 90 (tấn) 60 x 2 = 120 (tấn) 120 – 50 = 70 (tấn) IV/ PHẦN 4: 21) CÁC BÀI TOÁNCHUYỂN ĐỘNG: - Loại toán 1 động tử - Hai động tử chạy ngược chiều - Hai động tử chạy cùng chiều Ví dụ 1: Cùng một lúc có một ô tô từ tỉnh A đến tỉnh b Với vận tốc 50 Km/giờ Một xe máy từ tỉnh B đến tỉnh A với