Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = x2 B y = x4 + 3x2 + 2 C y = √[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = tan x Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 300 D 450 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = + ln ln 5 ln x x C y = −1+ D y = − ln ln 5 ln ln Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = 12 12 √ √ 3ab2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + 2ty = + tz = Câu Cho hàm số y = A ab < ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B ad > C ac < D bc > Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 2; 0) C (0; −2; 0) D (0; 6; 0) √ Câu Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)· Câu 10 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A −9 B R2 f (x) C D −1 Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + 2ty = 2tz = + t C x = + ty = tz = + t D x = − ty = tz = + t Trang 1/5 Mã đề 001 − → Câu 12 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 45 C 30◦ D 90◦ z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 13 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường trịn (C) √ A r = B r = C r = D r = y−6 z+2 x−2 = = Câu 14 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ D √ B √ C √ A 10 10 53 √ √ a Tính góc Câu 15 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 90o B 45o C 30o D 60o có đáy ABC tam giác vuông cân A,AB = a Biết Câu 16 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = !2016 !2018 1−i 1+i + Câu 18 Số phức z = 1−i 1+i A B −2 C + i D Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = 2ki D A = Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức Câu 21 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C Câu 22 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + C |z|2 + 2|z| + (1 + i)(2 − i) Câu 23 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D D z · z + z + z + D |z| = Câu 24 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 25 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 Trang 2/5 Mã đề 001 Câu 26 Tìm nguyên hàm hàm số f (x) = √ 1√ 2x + + C R C f (x)dx = √ + C 2x + A R f (x)dx = 2x + R √ B f (x) = 2x + + C R √ D f (x)dx = 2x + + C Câu 27 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B (x − 1) x + C C x2 x + C Câu 28 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e2x C F(x) = e x D (x + 1) x + C D F(x) = e x + Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z − = D −2x + y − z + = Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = R2 Câu 32 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2025 B 2024 C D −2024 Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 C |z| < D < |z| < A |z| > B ≤ |z| ≤ 2 2 √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Trang 3/5 Mã đề 001 Câu 38 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| √ A 2 B C z số thực Giá trị lớn + z2 D Câu 39 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = 2016 C P = −2016 D P = A max T = Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 3a3 D 6a3 A 9a3 Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = πRh + πR2 D S = 2πRl + 2πR2 Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx |x2 − 2x|dx ax + b 2x )e + C Khi giá trị a + b là: C D 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B Không tồn m C m = D m = Câu 48 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B R Trang 4/5 Mã đề 001 √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = C y′ = √ (x − 1) ln 2(x − 1) ln x2 − ln D y′ = (x2 x − 1)log4 e - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001