facebook/hoitoanhoc Trang 1/40 CHỦ ĐỀ 3 PHƯƠNG TRÌNH MẶT PHẲNG A TỔNG HỢP LÝ THUYẾT I Vectơ pháp tuyến của mặt phẳng • Vectơ 0n ≠ là vectơ pháp tuyến (VTPT) nếu giá của n vuông góc với mặt phẳng[.]
CHỦ ĐỀ PHƯƠNG TRÌNH MẶT PHẲNG A TỔNG HỢP LÝ THUYẾT I Vectơ pháp tuyến mặt phẳng • Vectơ n ≠ vectơ pháp tuyến (VTPT) giá n vng góc với mặt phẳng (α ) • Chú ý: Nếu n VTPT mặt phẳng (α ) k n (k ≠ 0) VTPT mặt phẳng (α ) Một mặt phẳng xác định biết điểm qua VTPT Nếu u , v có giá song song nằm mặt phẳng (α ) n = [u , v] VTPT (α ) II Phương trình tổng quát mặt phẳng Trong khơng gian Oxyz , mặt phẳng có dạng phương trình: Ax + By + Cz + D = với A2 + B + C ≠ Nếu mặt phẳng (α ) có phương trình Ax + By + Cz + D = có VTPT n( A; B; C ) Phương trình mặt phẳng qua điểm M ( x0 ; y0 ; z0 ) nhận vectơ n( A; B; C ) khác VTPT là: A( x − x0 ) + B( y − y0 ) + C ( z − z0 ) = • Các trường hợp riêng Xét phương trình mặt phẳng (α ) : Ax + By + Cz + D = với A2 + B + C ≠ Nếu D = mặt phẳng (α ) qua gốc tọa độ O Nếu A = 0, B ≠ 0, C ≠ mặt phẳng (α ) song song chứa trục Ox Nếu A ≠ 0, B = 0, C ≠ mặt phẳng (α ) song song chứa trục Oy Nếu A ≠ 0, B ≠ 0, C = mặt phẳng (α ) song song chứa trục Oz Nếu A= B= 0, C ≠ mặt phẳng (α ) song song trùng với ( Oxy ) Nếu A= C= 0, B ≠ mặt phẳng (α ) song song trùng với ( Oxz ) Nếu B= C= 0, A ≠ mặt phẳng (α ) song song trùng với ( Oyz ) Trang 1/40 Chú ý: Nếu phương trình (α ) khơng chứa ẩn (α ) song song chứa trục tương ứng x y z + + = Ở (α ) cắt trục tọa độ a b c điểm ( a; 0; ) , ( 0; b;0 ) , ( 0;0;c ) với abc ≠ Phương trình mặt phẳng theo đoạn chắn (α ) : III Khoảng cách từ điểm đến mặt phẳng • Trong khơng gian Oxyz , cho điểm M (x ; y0 ; z0 ) mặt phẳng ( α ) : Ax + By + Cz + D = Khi khoảng cách từ điểm M đến mặt phẳng (α ) tính: d ( M , ( )) IV Góc hai mặt phẳng Trong khơng gian Oxyz , cho hai | Ax0 By0 Cz0 D | A2 B C mặt phẳng ( α ) : A1 x + B1 y + C1 z + D1 = ( β ) : A2 x + B2 y + C2 z + D2 = Góc ( α ) ( β ) bù với góc hai VTPT nα , nβ Tức là: nα nβ A1 A2 + B1 B2 + C1C2 nβ cos ( ( α ) ,= = (β ) ) cos nα ,= nα nβ A12 + B12 + C12 A22 + B22 + C22 ( ) V Một số dạng tập viết phương trình mặt phẳng Dạng 1: Viết phương trình mặt phẳng biết điểm vectơ pháp tuyến Phương pháp giải Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 2: Viết phương trình mặt phẳng (α ) qua điểm M ( x0 ; y0 ; z0 ) song song với mặt phẳng ( β ) : Ax + By + Cz + D = cho trước Phương pháp giải Cách 1: Thực theo bước sau: VTPT ( β ) nβ = ( A; B; C ) (α ) // ( β ) nên VTPT mặt phẳng (α ) n= n= α β ( A; B; C ) Phương trình mặt phẳng (α ) : A ( x − x0 ) + B ( y − y0 ) + C ( z − z0 ) = Cách 2: Mặt phẳng (α ) // ( β ) nên phương trình ( P ) có dạng: Ax + By + Cz + D′ = (*), với D′ ≠ D Vì ( P ) qua điểm M ( x0 ; y0 ; z0 ) nên thay tọa độ M ( x0 ; y0 ; z0 ) vào (*) tìm D′ Dạng 3: Viết phương trình mặt phẳng (α ) qua điểm A , B , C khơng thẳng hàng Phương pháp giải Tìm tọa độ vectơ: AB, AC Trang 2/40 Vectơ pháp tuyến (α ) : nα = AB, AC Điểm thuộc mặt phẳng: A (hoặc B C ) Viết phương trình mặt phẳng qua điểm có VTPT nα Dạng 4: Viết phương trình mặt phẳng (α ) qua điểm M vng góc với đường thẳng ∆ Phương pháp giải Tìm VTCP ∆ u ∆ Vì (α ) ⊥ ∆ nên (α ) có VTPT nα = u∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT nα Dạng 5: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ , vng góc với mặt phẳng ( β ) Phương pháp giải Tìm VTPT ( β ) nβ Tìm VTCP ∆ u∆ VTPT mặt phẳng (α ) là: nα = nβ ; u∆ Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 6: Viết phương trình mặt phẳng (α ) qua hai điểm A , B vng góc với mặt phẳng ( β ) Phương pháp giải Tìm VTPT ( β ) nβ Tìm tọa độ vectơ AB VTPT mặt phẳng (α ) là: nα = nβ , AB Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 7: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ song song với ∆′ ( ∆ , ∆′ chéo nhau) Phương pháp giải Tìm VTCP ∆ ∆′ u∆ u∆ ' VTPT mặt phẳng (α ) là: nα = u∆ , u∆′ Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 8: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ điểm M Phương pháp giải Tìm VTCP ∆ u∆ , lấy điểm N ∆ Tính tọa độ MN VTPT mặt phẳng (α ) là: nα = u∆ ; MN Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 9: Viết phương trình mặt phẳng (α ) chứa đường thẳng cắt ∆ ∆′ Phương pháp giải Tìm VTCP ∆ ∆′ u∆ u∆ ' VTPT mặt phẳng (α ) là: nα = u∆ ; u∆ ' Trang 3/40 Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 10: Viết phương trình mặt phẳng (α ) chứa song song ∆ ∆′ Phương pháp giải Tìm VTCP ∆ ∆′ u∆ u∆′ , lấy M ∈ ∆, N ∈ ∆′ VTPT mặt phẳng (α ) là: nα = u∆ ; MN 3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 11:Viết phương trình mặt phẳng (α ) qua điểm M song song với hai đường thẳng ∆ ∆′ chéo cho trước Phương pháp giải Tìm VTCP ∆ ∆ ’ u∆ u∆ ' VTPT mặt phẳng (α ) là: nα = u∆ ; u∆′ 3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 12:Viết phương trình mặt phẳng (α ) qua điểm M vng góc với hai mặt phẳng ( P ) , ( Q ) cho trước Phương pháp giải Tìm VTPT ( P ) ( Q ) nP nQ VTPT mặt phẳng (α ) là: nα = nP ; nQ 3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 13: Viết phương trình mặt phẳng (α ) song song với mặt phẳng khoảng ( β ) : Ax + By + Cz + D = (β) cách k cho trước Phương pháp giải Trên mặt phẳng ( β ) chọn điểm M Do ( α ) // ( β ) nên ( α ) có phương trình Ax + By + Cz + D′ = ( D′ ≠ D ) Sử dụng công thức khoảng cách d ( ( α ) , ( β = ) ) d ( M , ( β= ) ) k để tìm D′ Dạng 14: Viết phương trình mặt phẳng cho trước cách điểm M ( β ) : Ax + By + Cz + D = (α ) song song với mặt phẳng khoảng k cho trước Phương pháp giải Do ( α ) // ( β ) nên ( α ) có phương trình Ax + By + Cz + D′ = ( D′ ≠ D ) Sử dụng công thức khoảng cách d ( M , ( α ) ) = k để tìm D′ Dạng 15: Viết phương trình mặt phẳng (α ) tiếp xúc với mặt cầu ( S ) Phương pháp giải Tìm tọa độ tâm I tính bán kính mặt cầu ( S ) Nếu mặt phẳng (α ) tiếp xúc với mặt cầu ( S ) M ∈ ( S ) mặt phẳng (α ) qua điểm M có VTPT MI Khi tốn khơng cho tiếp điểm ta phải sử dụng kiện tốn tìm VTPT mặt phẳng viết phương trình mặt phẳng có dạng: Ax + By + Cz + D = (D chưa biết) Sử dụng điều kiện tiếp xúc: d ( I , (α ) ) = R để tìm D Trang 4/40 Dạng 16: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ tạo với mặt phẳng cho trước góc ϕ ( β ) : Ax + By + Cz + D = cho trước Phương pháp giải Tìm VTPT ( β ) nβ Gọi nα ( A′; B′; C ′) (nα ; nβ ) = ϕ Dùng phương pháp vô định giải hệ: ⇒ nα ⊥ n u α ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT VI Các ví dụ Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm A(1;0; −2) có vectơ pháp tuyến n(1; −1; 2) Lời giải Mặt phẳng ( P) qua điểm A(1;0; −2) có vectơ pháp tuyến n(1; −1; 2) có phương trình là: 1( x − 1) − 1( y − 0) + 2( z + 2) = ⇔ x − y + 2z + = Vậy phương trình mặt phẳng ( P) là: x − y + z + = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm M (0;1;3) song song với mặt phẳng (Q) : x − z + = Lời giải Mặt phẳng ( P) song song với mặt phẳng (Q) : x − z + = nên mặt phẳng ( P) có phương trình dạng: x − z + D = ( D ≠ 1) Mặt phẳng ( P) qua điểm M (0;1;3) nên thay tọa độ điểm M vào phương trình mặt phẳng phải thỏa mãn Ta được: 2.0 − 3.3 + D =0 ⇔ D =9 (thỏa mãn D ≠ ) Vậy phương trình mặt phẳng ( P) là: x − z + = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng qua ba điểm A(1; 0; −2), B (1;1;1), C (0; −1; 2) Lời giải Ta có: AB =(0;1;3), AC =(−1; −1: 4) ⇒ AB, AC = (7; −3;1) Gọi n vectơ pháp tuyến mặt phẳng ( ABC ) ta có n ⊥ AB nên n phương với AB, AC n ⊥ AC Chọn = n (7; −3;1) ta phương trình mặt phẳng ( ABC ) là: 7( x − 1) − 3( y − 0) + 1( z + 2) = ⇔ 7x − 3y + z − = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) qua điểm O vng t x= góc với đường thẳng d : y =−1 + 2t = + t z Lời giải Đường thẳng d có vectơ phương là: ud = (1; 2;1) Mặt phẳng (α ) vng góc với đường thẳng d nên (α ) có vectơ pháp tuyến là: n= u= (1; 2;1) α d Trang 5/40 Đồng thời (α ) qua điểm O nên có phương trình là: x + y + z = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng x −t = d : y =−1 + 2t vuông góc với ( β ) : x + y − z + =0 = + t z Lời giải Đường thẳng d qua điểm A ( 0; −1; ) có VTCP là: ud = (−1; 2;1) Mặt phẳng ( β ) có VTPT là= nβ (1; 2; −1) Mặt phẳng (α ) chứa đường thẳng d vng góc với ( β ) nên (α ) có vectơ pháp tuyến ud , nβ = là: nα = −4 (1;0;1) ( −4;0; −4 ) = Phương trình mặt phẳng ( α ) là: x + z − = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) qua điểm A(1;2; −2), B (2; −1;4) vng góc với ( β ) : x − y − z + =0 Lời giải Có AB= (1; −3;6 ) Mặt phẳng ( β ) có VTPT nβ = (1; −2; −1) phẳng (α ) chứa A , B vng góc với ( β ) nên (α ) có vectơ pháp tuyến là: = AB, nβ (15;7;1) Phương trình mặt phẳng ( α ) là: 15 x + z + − 27 =0 Mặt = nα Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) chứa đường thẳng x =1 x −1 y z −1 d1 : y = − 2t song song với đường thẳng d : = = 2 z = 1+ t Lời giải Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1) Đường thẳng d qua điểm M (1; 0;1) vectơ phương u2 (1; 2; 2) Ta có u1 , u2 = (−6;1; 2) Gọi n vectơ pháp tuyến mặt phẳng ( P) , ta có: n ⊥ u1 nên n phương với u1 , u2 n ⊥ u2 Chọn n = (−6;1; 2) Mặt phẳng ( P) qua điểm M (1;1;1) nhận vectơ pháp tuyến n = (−6;1; 2) có phương trình: − 6( x − 1) + 1( y − 1) + 2( z − 1) = ⇔ −6 x + y + z + =0 Thay tọa độ điểm M vào phương trình mặt phẳng ( P) thấy không thỏa mãn Vậy phương trình mặt phẳng ( P) là: −6 x + y + z + = Trang 6/40 Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng x =1 d : y = − 2t điểm M (−4;3;2) z = 1+ t Lời giải Đường thẳng d qua điểm N (1;1;1) vectơ phương ud (0; −2;1) MN = ( 5; −2; −1) phẳng (α ) chứa đường thẳng d điểm M nên (α ) có vectơ pháp tuyến là: = u d , MN ( 4;5;10 ) Phương trình mặt phẳng ( α ) là: x + y + 10 z − 19 = Mặt = nα Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) chứa đường thẳng x =1 x = + 3t d1 : y = − 2t d : y = − 2t z = 1+ t z = 1+ t Lời giải Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1) Đường thẳng d qua điểm M (1;1;1) vectơ phương u2 (3; −2;1) Ta có u1 , u2 = ( 0;3;6 ) , M 1M = ( 0;0;0 ) Do M 1M u1 , u2 = nên đường thẳng d1 , d cắt Mặt phẳng (α ) chứa đường thẳng d1 , d cắt nên (α ) có vectơ pháp tuyến là: = nα = u1 , u2 (= 0;3;6 ) ( 0;1; ) Phương trình mặt phẳng ( α ) là: y + z − = Ví dụ 10 Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng x=4 x =1 d1 : y = − 2t d : y= − 4t z = 1+ t z = 1+ t Lời giải Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1) Đường thẳng d qua điểm M ( 4;3;1) vectơ phương u2 ( 0; −4; ) Ta có u1 , u2 = , M 1M = ( 3; 2;0 ) Do u1 , u2 = nên đường thẳng d1 , d song song Mặt phẳng (α ) chứa đường thẳng d1 , d song song nên (α ) có vectơ pháp tuyến là: nα =u1 , M 1M =− ( 2;3;6 ) =− ( 2; −3; −6 ) Phương trình mặt phẳng ( α ) là: x − y − z + = Trang 7/40 Ví dụ 11 Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm x =1 x −1 y z −1 A(1;0; −2) ( P) song song với hai đường thẳng d1 : y = − 2t d : = = 2 z = 1+ t Lời giải Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1) Đường thẳng d qua điểm M (1; 0;1) vectơ phương u2 (1; 2; 2) Ta có u1 , u2 = (−6;1; 2) Gọi n vectơ pháp tuyến mặt phẳng ( P) , ta có: n ⊥ u1 nên n phương với u1 , u2 n ⊥ u2 Chọn n = (−6;1; 2) ta phương trình mặt phẳng ( P) là: − 6( x − 1) + 1( y − 0) + 2( z + 2) = ⇔ −6 x + y + z + 10 =0 Ví dụ 12 : Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm M(−1; −2; 5) vng góc với hai mặt phẳng (Q) : x + y − z + = ( R) : x − y + z + = Lời giải VTPT (Q) nQ (1; 2; −3) , VTPT ( R) nR (2; −3;1) Ta có nQ , nR =(−7; −7; −7) nên mặt phẳng ( P) nhận n(1;1;1) VTPT ( P) qua điểm M(−1; −2; 5) nên có phương trình là: x + y + z − = Ví dụ 13: Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = cách (Q) khoảng Lời giải Trên mặt phẳng (Q) : x + y − z + = chọn điểm M(−1; 0; 0) Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D D 8 | 1 D | 12 22 (2) D 10 Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − = x + y − z + 10 = Ví dụ 14 : Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = ( P) cách điểm M(1; −2;1) khoảng Lời giải Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D D 4 |1 D | | 5 D | Vì d ( M , ( P)) D 14 12 22 (2) Vì d (( P ), (Q)) d ( M , ( P)) | 1 D | Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − = x + y − z + 14 = Trang 8/40 Ví dụ 15: Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = 0 tiếp xúc với mặt cầu (S ) : x + y + z2 + x − y − z − = Lời giải Mặt cầu (S ) có tâm I (1; 2;1) bán kính R (1) 22 12 Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D Vì tiếp ( P) xúc với mặt cầu (S ) nên D 10 |1 D | D 12 22 (2) Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − 10 = x + y − z + = d ( I , ( P )) R | 1 D | Ví dụ 16 : Trong mặt phẳng Oxyz , cho mặt phẳng phương trình ( P ) : x + y − z + = d : ( Q ) chứa đường thẳng ( P) đường thẳng d có x +1 = y + = z − Viết phương trình mặt phẳng d tạo với mặt phẳng ( P ) góc 600 Lời giải Giả sử mặt phẳng (Q) có dạng Ax + By + Cz + D = ( A2 + B + C ≠ ) Chọn hai điểm M ( −1; −1;3) , N (1;0; ) ∈ d C = −2 A − B A ( −1) + B ( −1) + C.3 + D = ⇒ Mặt phẳng ( Q ) chứa d nên M , N ∈ ( Q ) ⇒ D A + 4B = A.1 + B.0 + C.4 + D = Suy mặt phẳng có phương trình Ax + By + ( −2 A − B ) z + A + B =0 có VTPT n= ( A; B; −2 A − B ) Q ( Q ) tạo 60 ⇒ với mặt phẳng ( P) góc A + 2B + A + B 2 A + B + (2 A + B) = cos(600 ) = + + (−1) 2 ⇔ A = (4 ± 3) B Cho B = ta A= (4 ± 3) Vậy có phương trình mặt phẳng ( ) 3) x + y + ( −9 − ) z + 32 + 14 (4 − 3) x + y + −9 + z + 32 − 14 =0 (4 + =0 Trang 9/40 B BÀI TẬP Câu Chọn khẳng định sai A Nếu n vectơ pháp tuyến mặt phẳng (P) k n (k ∈ ) vectơ pháp tuyến mặt phẳng (P) B Một mặt phẳng hoàn toàn xác định biết điểm qua vectơ pháp tuyến C Mọi mặt phẳng khơng gian Oxyz có phương trình dạng: Ax + By + Cz + D = ( A2 + B + C ≠ 0) D Trong khơng gian Oxyz , phương trình dạng: Ax + By + Cz + D = ( A2 + B + C ≠ 0) Câu Câu Câu phương trình mặt phẳng Chọn khẳng định A Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng song song B Nếu hai mặt phẳng song song hai vectơ pháp tuyến tương ứng phương C Nếu hai mặt phẳng trùng hai vectơ pháp tuyến tương ứng D Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng trùng Chọn khẳng định sai A Nếu hai đường thẳng AB, CD song song vectơ AB, CD vectơ pháp tuyến mặt phẳng ( ABCD) B Cho ba điểm A, B, C không thẳng hàng, vectơ AB, AC vectơ pháp tuyến mặt phẳng ( ABC ) C Cho hai đường thẳng AB, CD chéo nhau, vectơ AB, CD vectơ pháp tuyến mặt phẳng chứa đường thẳng AB song song với đường thẳng CD D Nếu hai đường thẳng AB, CD cắt vectơ AB, CD vectơ pháp tuyến mặt phẳng ( ABCD) Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng (α ) : Ax + By + Cz + D = Tìm khẳng định sai mệnh đề sau: A A = 0, B ≠ 0, C ≠ 0, D ≠ (α ) song song với trục Ox B D = (α ) qua gốc tọa độ C A ≠ 0, B = 0, C ≠ 0, D = (α ) song song với mặt phẳng ( Oyz ) D A = 0, B = 0, C ≠ 0, D ≠ (α ) song song với mặt phẳng ( Oxy ) Câu Trong không gian với hệ toạ độ Oxyz , cho A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) , ( abc ≠ ) Khi phương trình mặt phẳng ( ABC ) là: x y z x y z B + + = 1 + + = b a c a b c x y z x y z C + + = D + + = 1 a c b c b a Tìm khẳng định Trong khơng gian với hệ toạ độ Oxyz , cho mặt phẳng (α ) : x − z = A Câu mệnh đề sau: A (α ) / /Ox B (α ) / / ( xOz ) C (α ) / /Oy D (α ) ⊃ Oy Trang 10/40