1. Trang chủ
  2. » Tất cả

Tài liệu phương trình mặt phẳng

38 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 825,76 KB

Nội dung

facebook/hoitoanhoc Trang 1/40 CHỦ ĐỀ 3 PHƯƠNG TRÌNH MẶT PHẲNG A TỔNG HỢP LÝ THUYẾT I Vectơ pháp tuyến của mặt phẳng • Vectơ 0n ≠   là vectơ pháp tuyến (VTPT) nếu giá của n  vuông góc với mặt phẳng[.]

CHỦ ĐỀ PHƯƠNG TRÌNH MẶT PHẲNG A TỔNG HỢP LÝ THUYẾT I Vectơ pháp tuyến mặt phẳng    • Vectơ n ≠ vectơ pháp tuyến (VTPT) giá n vng góc với mặt phẳng (α ) • Chú ý:    Nếu n VTPT mặt phẳng (α ) k n (k ≠ 0) VTPT mặt phẳng (α )  Một mặt phẳng xác định biết điểm qua VTPT       Nếu u , v có giá song song nằm mặt phẳng (α ) n = [u , v] VTPT (α ) II Phương trình tổng quát mặt phẳng  Trong khơng gian Oxyz , mặt phẳng có dạng phương trình: Ax + By + Cz + D = với A2 + B + C ≠  Nếu mặt phẳng (α ) có phương trình Ax + By + Cz + D = có VTPT  n( A; B; C )    Phương trình mặt phẳng qua điểm M ( x0 ; y0 ; z0 ) nhận vectơ n( A; B; C ) khác VTPT là: A( x − x0 ) + B( y − y0 ) + C ( z − z0 ) = • Các trường hợp riêng Xét phương trình mặt phẳng (α ) : Ax + By + Cz + D = với A2 + B + C ≠  Nếu D = mặt phẳng (α ) qua gốc tọa độ O  Nếu A = 0, B ≠ 0, C ≠ mặt phẳng (α ) song song chứa trục Ox  Nếu A ≠ 0, B = 0, C ≠ mặt phẳng (α ) song song chứa trục Oy  Nếu A ≠ 0, B ≠ 0, C = mặt phẳng (α ) song song chứa trục Oz  Nếu A= B= 0, C ≠ mặt phẳng (α ) song song trùng với ( Oxy )  Nếu A= C= 0, B ≠ mặt phẳng (α ) song song trùng với ( Oxz )  Nếu B= C= 0, A ≠ mặt phẳng (α ) song song trùng với ( Oyz ) Trang 1/40 Chú ý:  Nếu phương trình (α ) khơng chứa ẩn (α ) song song chứa trục tương ứng x y z + + = Ở (α ) cắt trục tọa độ a b c điểm ( a; 0; ) , ( 0; b;0 ) , ( 0;0;c ) với abc ≠  Phương trình mặt phẳng theo đoạn chắn (α ) : III Khoảng cách từ điểm đến mặt phẳng • Trong khơng gian Oxyz , cho điểm M (x ; y0 ; z0 ) mặt phẳng ( α ) : Ax + By + Cz + D = Khi khoảng cách từ điểm M đến mặt phẳng (α ) tính: d ( M , ( ))  IV Góc hai mặt phẳng Trong khơng gian Oxyz , cho hai | Ax0  By0  Cz0  D | A2  B  C mặt phẳng ( α ) : A1 x + B1 y + C1 z + D1 = ( β ) : A2 x + B2 y + C2 z + D2 =   Góc ( α ) ( β ) bù với góc hai VTPT nα , nβ Tức là:   nα nβ   A1 A2 + B1 B2 + C1C2 nβ cos ( ( α ) ,=  =  (β ) ) cos nα ,= nα nβ A12 + B12 + C12 A22 + B22 + C22 ( ) V Một số dạng tập viết phương trình mặt phẳng Dạng 1: Viết phương trình mặt phẳng biết điểm vectơ pháp tuyến Phương pháp giải Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 2: Viết phương trình mặt phẳng (α ) qua điểm M ( x0 ; y0 ; z0 ) song song với mặt phẳng ( β ) : Ax + By + Cz + D = cho trước Phương pháp giải Cách 1: Thực theo bước sau:  VTPT ( β ) nβ = ( A; B; C )   (α ) // ( β ) nên VTPT mặt phẳng (α ) n= n= α β ( A; B; C ) Phương trình mặt phẳng (α ) : A ( x − x0 ) + B ( y − y0 ) + C ( z − z0 ) = Cách 2: Mặt phẳng (α ) // ( β ) nên phương trình ( P ) có dạng: Ax + By + Cz + D′ = (*), với D′ ≠ D Vì ( P ) qua điểm M ( x0 ; y0 ; z0 ) nên thay tọa độ M ( x0 ; y0 ; z0 ) vào (*) tìm D′ Dạng 3: Viết phương trình mặt phẳng (α ) qua điểm A , B , C khơng thẳng hàng Phương pháp giải   Tìm tọa độ vectơ: AB, AC Trang 2/40    Vectơ pháp tuyến (α ) : nα =  AB, AC  Điểm thuộc mặt phẳng: A (hoặc B C )  Viết phương trình mặt phẳng qua điểm có VTPT nα Dạng 4: Viết phương trình mặt phẳng (α ) qua điểm M vng góc với đường thẳng ∆ Phương pháp giải  Tìm VTCP ∆ u ∆   Vì (α ) ⊥ ∆ nên (α ) có VTPT nα = u∆  Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT nα Dạng 5: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ , vng góc với mặt phẳng ( β ) Phương pháp giải  Tìm VTPT ( β ) nβ  Tìm VTCP ∆ u∆    VTPT mặt phẳng (α ) là: nα =  nβ ; u∆  Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 6: Viết phương trình mặt phẳng (α ) qua hai điểm A , B vng góc với mặt phẳng ( β ) Phương pháp giải  Tìm VTPT ( β ) nβ  Tìm tọa độ vectơ AB    VTPT mặt phẳng (α ) là: nα =  nβ , AB  Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 7: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ song song với ∆′ ( ∆ , ∆′ chéo nhau) Phương pháp giải   Tìm VTCP ∆ ∆′ u∆ u∆ '    VTPT mặt phẳng (α ) là: nα = u∆ , u∆′    Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 8: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ điểm M Phương pháp giải   Tìm VTCP ∆ u∆ , lấy điểm N ∆ Tính tọa độ MN    VTPT mặt phẳng (α ) là: nα = u∆ ; MN    Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 9: Viết phương trình mặt phẳng (α ) chứa đường thẳng cắt ∆ ∆′ Phương pháp giải   Tìm VTCP ∆ ∆′ u∆ u∆ '    VTPT mặt phẳng (α ) là: nα = u∆ ; u∆ '  Trang 3/40 Lấy điểm M ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 10: Viết phương trình mặt phẳng (α ) chứa song song ∆ ∆′ Phương pháp giải   Tìm VTCP ∆ ∆′ u∆ u∆′ , lấy M ∈ ∆, N ∈ ∆′    VTPT mặt phẳng (α ) là: nα = u∆ ; MN  3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 11:Viết phương trình mặt phẳng (α ) qua điểm M song song với hai đường thẳng ∆ ∆′ chéo cho trước Phương pháp giải   Tìm VTCP ∆ ∆ ’ u∆ u∆ '    VTPT mặt phẳng (α ) là: nα = u∆ ; u∆′  3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 12:Viết phương trình mặt phẳng (α ) qua điểm M vng góc với hai mặt phẳng ( P ) , ( Q ) cho trước Phương pháp giải   Tìm VTPT ( P ) ( Q ) nP nQ    VTPT mặt phẳng (α ) là: nα =  nP ; nQ  3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 13: Viết phương trình mặt phẳng (α ) song song với mặt phẳng khoảng ( β ) : Ax + By + Cz + D = (β) cách k cho trước Phương pháp giải Trên mặt phẳng ( β ) chọn điểm M Do ( α ) // ( β ) nên ( α ) có phương trình Ax + By + Cz + D′ = ( D′ ≠ D ) Sử dụng công thức khoảng cách d ( ( α ) , ( β = ) ) d ( M , ( β= ) ) k để tìm D′ Dạng 14: Viết phương trình mặt phẳng cho trước cách điểm M ( β ) : Ax + By + Cz + D = (α ) song song với mặt phẳng khoảng k cho trước Phương pháp giải Do ( α ) // ( β ) nên ( α ) có phương trình Ax + By + Cz + D′ = ( D′ ≠ D ) Sử dụng công thức khoảng cách d ( M , ( α ) ) = k để tìm D′ Dạng 15: Viết phương trình mặt phẳng (α ) tiếp xúc với mặt cầu ( S ) Phương pháp giải Tìm tọa độ tâm I tính bán kính mặt cầu ( S ) Nếu mặt phẳng (α ) tiếp xúc với mặt cầu ( S ) M ∈ ( S ) mặt phẳng (α ) qua  điểm M có VTPT MI Khi tốn khơng cho tiếp điểm ta phải sử dụng kiện tốn tìm VTPT mặt phẳng viết phương trình mặt phẳng có dạng: Ax + By + Cz + D = (D chưa biết) Sử dụng điều kiện tiếp xúc: d ( I , (α ) ) = R để tìm D Trang 4/40 Dạng 16: Viết phương trình mặt phẳng (α ) chứa đường thẳng ∆ tạo với mặt phẳng cho trước góc ϕ ( β ) : Ax + By + Cz + D = cho trước Phương pháp giải  Tìm VTPT ( β ) nβ  Gọi nα ( A′; B′; C ′)   (nα ; nβ ) = ϕ  Dùng phương pháp vô định giải hệ:    ⇒ nα ⊥ n u  α ∆ Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT VI Các ví dụ Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm A(1;0; −2)  có vectơ pháp tuyến n(1; −1; 2) Lời giải  Mặt phẳng ( P) qua điểm A(1;0; −2) có vectơ pháp tuyến n(1; −1; 2) có phương trình là: 1( x − 1) − 1( y − 0) + 2( z + 2) = ⇔ x − y + 2z + = Vậy phương trình mặt phẳng ( P) là: x − y + z + = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm M (0;1;3) song song với mặt phẳng (Q) : x − z + = Lời giải Mặt phẳng ( P) song song với mặt phẳng (Q) : x − z + = nên mặt phẳng ( P) có phương trình dạng: x − z + D = ( D ≠ 1) Mặt phẳng ( P) qua điểm M (0;1;3) nên thay tọa độ điểm M vào phương trình mặt phẳng phải thỏa mãn Ta được: 2.0 − 3.3 + D =0 ⇔ D =9 (thỏa mãn D ≠ ) Vậy phương trình mặt phẳng ( P) là: x − z + = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng qua ba điểm A(1; 0; −2), B (1;1;1), C (0; −1; 2) Lời giải     Ta có: AB =(0;1;3), AC =(−1; −1: 4) ⇒  AB, AC  = (7; −3;1)  Gọi n vectơ pháp tuyến mặt phẳng ( ABC ) ta có       n ⊥ AB    nên n phương với  AB, AC  n ⊥ AC  Chọn = n (7; −3;1) ta phương trình mặt phẳng ( ABC ) là: 7( x − 1) − 3( y − 0) + 1( z + 2) = ⇔ 7x − 3y + z − = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) qua điểm O vng t x=  góc với đường thẳng d :  y =−1 + 2t = + t z Lời giải  Đường thẳng d có vectơ phương là: ud = (1; 2;1) Mặt phẳng (α ) vng góc với đường thẳng d nên (α ) có vectơ pháp tuyến là:   n= u= (1; 2;1) α d Trang 5/40 Đồng thời (α ) qua điểm O nên có phương trình là: x + y + z = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng x −t =  d :  y =−1 + 2t vuông góc với ( β ) : x + y − z + =0 = + t z Lời giải  Đường thẳng d qua điểm A ( 0; −1; ) có VTCP là: ud = (−1; 2;1)  Mặt phẳng ( β ) có VTPT là= nβ (1; 2; −1) Mặt phẳng (α ) chứa đường thẳng d vng góc với ( β ) nên (α ) có vectơ pháp tuyến    ud , nβ  = là: nα = −4 (1;0;1)   ( −4;0; −4 ) = Phương trình mặt phẳng ( α ) là: x + z − = Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) qua điểm A(1;2; −2), B (2; −1;4) vng góc với ( β ) : x − y − z + =0 Lời giải  Có AB= (1; −3;6 )  Mặt phẳng ( β ) có VTPT nβ = (1; −2; −1) phẳng (α ) chứa A , B vng góc với ( β ) nên (α ) có vectơ pháp tuyến là:   =   AB, nβ  (15;7;1) Phương trình mặt phẳng ( α ) là: 15 x + z + − 27 =0 Mặt  = nα Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) chứa đường thẳng x =1  x −1 y z −1 d1 :  y = − 2t song song với đường thẳng d : = = 2  z = 1+ t  Lời giải  Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1)  Đường thẳng d qua điểm M (1; 0;1) vectơ phương u2 (1; 2; 2)   Ta có u1 , u2  = (−6;1; 2)  Gọi n vectơ pháp tuyến mặt phẳng ( P) , ta có:     n ⊥ u1      nên n phương với u1 , u2  n ⊥ u2  Chọn n = (−6;1; 2)  Mặt phẳng ( P) qua điểm M (1;1;1) nhận vectơ pháp tuyến n = (−6;1; 2) có phương trình: − 6( x − 1) + 1( y − 1) + 2( z − 1) = ⇔ −6 x + y + z + =0 Thay tọa độ điểm M vào phương trình mặt phẳng ( P) thấy không thỏa mãn Vậy phương trình mặt phẳng ( P) là: −6 x + y + z + = Trang 6/40 Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng x =1  d :  y = − 2t điểm M (−4;3;2)  z = 1+ t  Lời giải  Đường thẳng d qua điểm N (1;1;1) vectơ phương ud (0; −2;1)  MN = ( 5; −2; −1) phẳng (α ) chứa đường thẳng d điểm M nên (α ) có vectơ pháp tuyến là:   =  u  d , MN  ( 4;5;10 ) Phương trình mặt phẳng ( α ) là: x + y + 10 z − 19 = Mặt  = nα Ví dụ Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) chứa đường thẳng x =1  x = + 3t   d1 :  y = − 2t d :  y = − 2t  z = 1+ t z = 1+ t   Lời giải  Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1)  Đường thẳng d qua điểm M (1;1;1) vectơ phương u2 (3; −2;1)    Ta có u1 , u2  = ( 0;3;6 ) , M 1M = ( 0;0;0 )    Do M 1M u1 , u2  = nên đường thẳng d1 , d cắt Mặt phẳng (α ) chứa đường thẳng d1 , d cắt nên (α ) có vectơ pháp tuyến là:    = nα = u1 , u2  (= 0;3;6 ) ( 0;1; ) Phương trình mặt phẳng ( α ) là: y + z − = Ví dụ 10 Trong khơng gian Oxyz , viết phương trình mặt phẳng (α ) chứa đường thẳng  x=4 x =1   d1 :  y = − 2t d :  y= − 4t z = 1+ t  z = 1+ t   Lời giải  Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1)  Đường thẳng d qua điểm M ( 4;3;1) vectơ phương u2 ( 0; −4; )     Ta có u1 , u2  = , M 1M = ( 3; 2;0 )    Do u1 , u2  = nên đường thẳng d1 , d song song Mặt phẳng (α ) chứa đường thẳng d1 , d song song nên (α ) có vectơ pháp tuyến là:    nα =u1 , M 1M  =− ( 2;3;6 ) =− ( 2; −3; −6 ) Phương trình mặt phẳng ( α ) là: x − y − z + = Trang 7/40 Ví dụ 11 Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm x =1  x −1 y z −1 A(1;0; −2) ( P) song song với hai đường thẳng d1 :  y = − 2t d : = = 2  z = 1+ t  Lời giải  Đường thẳng d1 qua điểm M (1;1;1) vectơ phương u1 (0; −2;1)  Đường thẳng d qua điểm M (1; 0;1) vectơ phương u2 (1; 2; 2)   Ta có u1 , u2  = (−6;1; 2)  Gọi n vectơ pháp tuyến mặt phẳng ( P) , ta có:     n ⊥ u1      nên n phương với u1 , u2  n ⊥ u2  Chọn n = (−6;1; 2) ta phương trình mặt phẳng ( P) là: − 6( x − 1) + 1( y − 0) + 2( z + 2) = ⇔ −6 x + y + z + 10 =0 Ví dụ 12 : Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) qua điểm M(−1; −2; 5) vng góc với hai mặt phẳng (Q) : x + y − z + = ( R) : x − y + z + = Lời giải   VTPT (Q) nQ (1; 2; −3) , VTPT ( R) nR (2; −3;1)    Ta có  nQ , nR  =(−7; −7; −7) nên mặt phẳng ( P) nhận n(1;1;1) VTPT ( P) qua điểm M(−1; −2; 5) nên có phương trình là: x + y + z − = Ví dụ 13: Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = cách (Q) khoảng Lời giải Trên mặt phẳng (Q) : x + y − z + = chọn điểm M(−1; 0; 0) Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D   D  8  | 1  D |   12  22  (2)  D  10 Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − = x + y − z + 10 = Ví dụ 14 : Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = ( P) cách điểm M(1; −2;1) khoảng Lời giải Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D   D  4 |1   D |  | 5  D |   Vì d ( M , ( P))    D  14 12  22  (2) Vì d (( P ), (Q))   d ( M , ( P))   | 1  D | Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − = x + y − z + 14 = Trang 8/40 Ví dụ 15: Trong khơng gian Oxyz , viết phương trình mặt phẳng ( P) song song với mặt phẳng (Q) : x + y − z + = 0 tiếp xúc với mặt cầu (S ) : x + y + z2 + x − y − z − = Lời giải Mặt cầu (S ) có tâm I (1; 2;1) bán kính R  (1)  22  12   Do ( P) song song với mặt phẳng (Q) nên phương trình mặt phẳng (P) có dạng: x + y − 2z + D = với D  Vì tiếp ( P) xúc với mặt cầu (S ) nên  D  10  |1  D |    D  12  22  (2) Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x + y − z − 10 = x + y − z + = d ( I , ( P ))  R   | 1    D | Ví dụ 16 : Trong mặt phẳng Oxyz , cho mặt phẳng phương trình ( P ) : x + y − z + = d : ( Q ) chứa đường thẳng ( P) đường thẳng d có x +1 = y + = z − Viết phương trình mặt phẳng d tạo với mặt phẳng ( P ) góc 600 Lời giải Giả sử mặt phẳng (Q) có dạng Ax + By + Cz + D = ( A2 + B + C ≠ ) Chọn hai điểm M ( −1; −1;3) , N (1;0; ) ∈ d C = −2 A − B  A ( −1) + B ( −1) + C.3 + D = ⇒ Mặt phẳng ( Q ) chứa d nên M , N ∈ ( Q ) ⇒  D A + 4B =  A.1 + B.0 + C.4 + D = Suy mặt phẳng có phương trình Ax + By + ( −2 A − B ) z + A + B =0 có VTPT  n= ( A; B; −2 A − B ) Q ( Q ) tạo 60 ⇒ với mặt phẳng ( P) góc A + 2B + A + B 2 A + B + (2 A + B) = cos(600 ) = + + (−1) 2 ⇔ A = (4 ± 3) B Cho B = ta A= (4 ± 3) Vậy có phương trình mặt phẳng ( ) 3) x + y + ( −9 − ) z + 32 + 14 (4 − 3) x + y + −9 + z + 32 − 14 =0 (4 + =0 Trang 9/40 B BÀI TẬP Câu Chọn khẳng định sai  A Nếu n vectơ pháp tuyến mặt phẳng (P) k n (k ∈ ) vectơ pháp tuyến mặt phẳng (P) B Một mặt phẳng hoàn toàn xác định biết điểm qua vectơ pháp tuyến C Mọi mặt phẳng khơng gian Oxyz có phương trình dạng: Ax + By + Cz + D = ( A2 + B + C ≠ 0) D Trong khơng gian Oxyz , phương trình dạng: Ax + By + Cz + D = ( A2 + B + C ≠ 0) Câu Câu Câu phương trình mặt phẳng Chọn khẳng định A Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng song song B Nếu hai mặt phẳng song song hai vectơ pháp tuyến tương ứng phương C Nếu hai mặt phẳng trùng hai vectơ pháp tuyến tương ứng D Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng trùng Chọn khẳng định sai   A Nếu hai đường thẳng AB, CD song song vectơ  AB, CD  vectơ pháp tuyến mặt phẳng ( ABCD)   B Cho ba điểm A, B, C không thẳng hàng, vectơ  AB, AC  vectơ pháp tuyến mặt phẳng ( ABC )   C Cho hai đường thẳng AB, CD chéo nhau, vectơ  AB, CD  vectơ pháp tuyến mặt phẳng chứa đường thẳng AB song song với đường thẳng CD   D Nếu hai đường thẳng AB, CD cắt vectơ  AB, CD  vectơ pháp tuyến mặt phẳng ( ABCD) Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng (α ) : Ax + By + Cz + D = Tìm khẳng định sai mệnh đề sau: A A = 0, B ≠ 0, C ≠ 0, D ≠ (α ) song song với trục Ox B D = (α ) qua gốc tọa độ C A ≠ 0, B = 0, C ≠ 0, D = (α ) song song với mặt phẳng ( Oyz ) D A = 0, B = 0, C ≠ 0, D ≠ (α ) song song với mặt phẳng ( Oxy ) Câu Trong không gian với hệ toạ độ Oxyz , cho A ( a;0;0 ) , B ( 0; b;0 ) , C ( 0;0; c ) , ( abc ≠ ) Khi phương trình mặt phẳng ( ABC ) là: x y z x y z B + + = 1 + + = b a c a b c x y z x y z C + + = D + + = 1 a c b c b a Tìm khẳng định Trong khơng gian với hệ toạ độ Oxyz , cho mặt phẳng (α ) : x − z = A Câu mệnh đề sau: A (α ) / /Ox B (α ) / / ( xOz ) C (α ) / /Oy D (α ) ⊃ Oy Trang 10/40

Ngày đăng: 05/04/2023, 22:22

w