Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
2,52 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn thi: TỐN, khối A (Đáp án - thang điểm gồm 05 trang) Câu I Nội dung Điểm 2,00 Khảo sát biến thiên vẽ đồ thị hàm số (1,00 điểm) x2 + x − Khi m = hàm số trở thành: y = = x−2+ x+3 x +3 • TXĐ: D = \ {−3} • Sự biến thiên: y ' = − 0,25 ⎡ x = −1 x + 6x + , y' = ⇔ ⎢ = 2 (x + 3) (x + 3) ⎣ x = −5 • yCĐ = y ( −5 ) = −9 , yCT = y ( −1) = −1 0,25 • TCĐ: x = −3 , TCX: y = x − • Bảng biến thiên: x −∞ y’ + −5 −9 −1 −3 − − +∞ + +∞ 0,25 +∞ y • Đồ thị: −∞ −∞ −1 y -5 -3 -1 O -1 x -2 0,25 -9 Tìm giá trị tham số m (1,00 điểm) mx + (3m − 2)x − 6m − = mx − + y= x + 3m x + 3m • Khi m = đồ thị hàm số không tồn hai tiệm cận • Khi m ≠ đồ thị hàm số có hai tiệm cận : d1: x = −3m ⇔ x + 3m = 0, d2: y = mx − ⇔ mx − y − = 0,25 0,25 Vectơ pháp tuyến d1, d2 n1 = (1;0) , n = (m; − 1) Góc d1 d2 45o cos450 = n1.n n1 n = m m2 + ⇔ m = ⇔ m = ± m2 + Trang 1/5 0,50 II 2,00 Giải phương trình lượng giác (1,00 điểm) 3π Điều kiện sin x ≠ sin(x − ) ≠ 1 + = −2 2(s inx + cosx) Phương trình cho tương đương với: s inx cosx ⎛ ⎞ ⇔ (s inx + cosx) ⎜ + 2 ⎟ = ⎝ s inxcosx ⎠ π • s inx + cosx = ⇔ x = − + kπ π 5π • ⇔ x = − + kπ x = + kπ + 2 = ⇔ sin 2x = − s inxcosx 8 Đối chiếu với điều kiện ta nghiệm phương trình : π π 5π + kπ (k ∈ ) x = − + kπ ; x = − + kπ ; x = 8 Giải hệ (1,00 điểm) 5 ⎧ ⎧ 2 ⎪ x + y + x y + xy + xy = − ⎪ x + y + xy + xy ( x + y ) = − ⎪ ⎪ ⇔⎨ (∗) ⎨ ⎪ x + y + xy(1 + 2x) = − ⎪(x + y) + xy = − ⎪ ⎪ ⎩ ⎩ 4 ⎧ ⎪ u + v + uv = − ⎧u = x + y ⎪ Hệ phương trình (∗) trở thành ⎨ Đặt ⎨ ⎩ v = xy ⎪u + v = − ⎪ ⎩ 5 ⎧ ⎡ ⎪v = − − u ⎢ u = 0, v = − ⎪ ⇔⎨ ⇔ ⎢ ⎢u = − , v = − ⎪u + u + u = ⎢ ⎪ ⎩ ⎣ 2 ⎧x + y = 5 25 ⎪ • Với u = 0, v = − ta có hệ pt ⎨ ⇔ x = y = − 4 16 ⎪ xy = − ⎩ • Với u = − , v = − ta có hệ phương trình 2 ⎧ ⎧2x + x − = ⎪ x − 2x + = ⎪ ⎪ ⇔ x = y = − ⇔⎨ ⎨ ⎪y = − ⎪y = − ⎩ 2x ⎪ ⎩ 2x ⎛ 25 ⎞ 3⎞ ⎛ Hệ phương trình có nghiệm : ⎜ ; − ⎟ ⎜1; − ⎟ ⎜ ⎟ 16 ⎠ 2⎠ ⎝ ⎝ III 0,50 0,50 0,50 0,50 2,00 Tìm toạ độ hình chiếu vng góc A d (1,00 điểm) Đường thẳng d có vectơ phương u ( 2;1; ) Gọi H hình chiếu vng góc A d, suy H(1 + 2t ; t ; + 2t) AH = (2t − 1; t − 5; 2t − 1) Vì AH ⊥ d nên AH u = ⇔ 2(2t – ) + t – + 2(2t – 1) = ⇔ t = Suy H ( 3;1; ) Trang 2/5 0,50 0,50 Viết phương trình mặt phẳng (α) chứa d cho (1,00 điểm) Gọi K hình chiếu vng góc A mặt phẳng (α) Ta có d(A, (α) ) = AK ≤ AH (tính chất đường vng góc đường xiên) Do khoảng cách từ A đến (α) lớn AK = AH, hay K ≡ H Suy (α) qua H nhận vectơ AH = (1 ; – ; 1) làm vectơ pháp tuyến 0,50 0,50 Phương trình (α) 1(x − 3) − 4(y − 1) + 1(z − 4) = ⇔ x − 4y + z − = IV 2,00 Tính tích phân (1,00 điểm) π I= π tg x tg x dx = ∫ dx ∫ cos 2x 2 0 (1 − tg x ) cos x 0,25 dx π Với x = t = ; với x = t = Đặt t = tgx ⇒ dt = cos x Suy I= ∫ t dt = − ∫ t + dt + ∫ 1− t 20 = ( ) ( ⎛ t3 t +1 ⎞ ⎞ ⎛ − ⎟ ⎜ ⎟ dt = ⎜ − − t + ln t −1 ⎠ ⎝ t +1 t −1 ⎠ ⎝ ) 10 ln + − 0,50 0,25 Tìm giá trị m (1,00 điểm) Điều kiện: ≤ x ≤ Đặt vế trái phương trình f (x) , x ∈ [ 0; 6] Ta có f '(x) = (2x)3 + 1 − − 2x (6 − x)3 6−x 1⎛ 1 = ⎜ − ⎜ (2x) (6 − x)3 ⎝ ⎛ 1 Đặt u(x) = ⎜ − ⎜ (2x)3 (6 − x)3 ⎝ ⎞ ⎛ 1 ⎞ ⎟+⎜ − ⎟, ⎟ ⎝ 2x 6−x ⎠ ⎠ x ∈ (0;6) 0,50 ⎞ ⎞ ⎛ ⎟ , v(x) = ⎜ − ⎟ ⎟ 6−x ⎠ ⎝ 2x ⎠ Ta thấy u ( ) = v ( ) = ⇒ f '(2) = Hơn u(x), v(x) dương khoảng ( 0; ) âm khoảng ( 2;6 ) Ta có bảng biến thiên: x f’(x) + f(x) + − +6 Suy giá trị cần tìm m là: + ≤ m < + Trang 3/5 0,50 12 + V.a 2,00 Viết phương trình tắc elíp (1,00 điểm) x y2 Gọi phương trình tắc elíp (E) là: + = , a > b > a b ⎧c ⎪ = ⎪a ⎪ Từ giả thiết ta có hệ phương trình: ⎨2 ( 2a + 2b ) = 20 ⎪ 2 ⎪c = a − b ⎪ ⎩ 0,50 Giải hệ phương trình tìm a = b = Phương trình tắc (E) 0,50 x y2 + = Tìm số lớn số a , a1 , , a n (1,00 điểm) Đặt f ( x ) = (1 + 2x ) = a + a1x + + a n x n ⇒ a + n a1 a ⎛1⎞ + + n = f ⎜ ⎟ = 2n n 2 ⎝2⎠ 0,50 Từ giả thiết suy 2n = 4096 = 212 ⇔ n = 12 k k Với k ∈ {0,1, 2, ,11} ta có a k = 2k C12 , a k +1 = 2k +1 C12+1 k ak 2k C12 23 k +1 < ⇔ k +1 k +1 < ⇔ ⇔ k > Do a > a > > a12 a k +1 0,50 Số lớn số a , a1 , , a12 a = 28 C12 = 126720 V.b 2,00 Giải phương trình logarit (1,00 điểm)) Điều kiện: x > x ≠ Phương trình cho tương đương với log 2x −1 (2x − 1)(x + 1) + log x +1 (2x − 1) = 0,50 ⇔ + log 2x −1 (x + 1) + log x +1 (2x − 1) = Đặt t = log 2x −1 (x + 1), ta có t + ⎡t = = ⇔ t − 3t + = ⇔ ⎢ t ⎣ t = • Với t = ⇔ log 2x −1 (x + 1) = ⇔ 2x − = x + ⇔ x = x = (loại) ã Vi t = ⇔ log2x −1 (x + 1) = ⇔ (2x − 1)2 = x + ⇔ ⎢ ⎢ x = (tháa m·n) ⎣ Nghiệm phương trình là: x = x = Trang 4/5 0,50 Tính thể tích tính góc (1,00 điểm) A' C' B' A C H B Gọi H trung điểm BC 1 Suy A ' H ⊥ (ABC) AH = BC = a + 3a = a 2 0,50 Do A 'H = A 'A − AH = 3a ⇒ A 'H = a a3 (đvtt) Vậy VA '.ABC = A'H.SΔABC = Trong tam giác vuông A 'B' H có: HB' = A 'B'2 + A 'H = 2a nên tam giác B' BH cân B' Đặt ϕ góc hai đường thẳng AA ' B'C ' ϕ = B ' BH Vậy cosϕ = 0,50 a = 2.2a Nếu thí sinh làm khơng theo cách nêu đáp án mà đủ điểm phần đáp án quy định -Hết - Trang 5/5 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn: TỐN, khối B (Đáp án - Thang điểm gồm 04 trang) Câu I Nội dung Điểm 2,00 Khảo sát biến thiên vẽ đồ thị hàm số (1,00 điểm) • TXĐ : ⎡x = • Sự biến thiên : y ' = 12x − 12x , y ' = ⇔ ⎢ ⎣ x = 0,25 • yCĐ = y(0) = 1, yCT = y(1) = −1 • Bảng biến thiên : x −∞ y’ 0,25 + y 0 − + +∞ 0,25 −1 −∞ • Đồ thị : +∞ y 1 O x 0,25 −1 Viết phương trình tiếp tuyến với đồ thị hàm số (1) (1,00 điểm) Đường thẳng Δ với hệ số góc k qua điểm M ( −1; − ) có phương trình : y = kx + k − Δ tiếp tuyến đồ thị hàm số (1) hệ phương trình sau có ⎧ 4x − 6x + = k ( x + 1) − ( ) ⎪ nghiệm : ⎨ ( 3) ⎪12x − 12x = k ⎩ ( 0,50 ) Thay k từ (3) vào (2) ta : 4x − 6x + = 12x − 12x ( x + 1) − ⎡ x = −1 ⇔ ( x + 1) ( 4x − 5) = ⇔ ⎢ ⎢x = ⎣ • Với x = −1 k = 24 , phương trình tiếp tuyến : y = 24x + 15 15 15 21 • Với x = k = , phương trình tiếp tuyến : y = x − 4 4 15 21 Các tiếp tuyến cần tìm : y = 24x + 15 y = x − 4 II 0,50 2,00 Giải phương trình lượng giác (1,00 điểm) Phương trình cho tương đương với sinx(cos x − sin x) + cos x(cos x − sin x) = ⇔ cos 2x(sin x + cos x) = Trang 1/4 0,50 • cos2x = ⇔ x = π kπ + π + kπ π kπ π Nghiệm phương trình x = + , x = − + kπ (k ∈ ) Giải hệ phương trình (1,00 điểm) Hệ phương trình cho tương đương với ⎧(x + xy) = 2x + ⎛ x2 ⎞ ⎪ ⇒ ⎜ x + 3x + − ⎟ = 2x + ⎨ x2 ⎠ xy = 3x + − ⎝ ⎪ ⎩ ⎡x = ⇔ x + 12x + 48x + 64x = ⇔ x(x + 4)3 = ⇔ ⎢ ⎣ x = − • sinx + 3cosx = ⇔ x = − • x = khơng thỏa mãn hệ phương trình 17 • x = −4 ⇒ y = 17 ⎞ ⎛ Nghiệm hệ phương trình (x ; y) = ⎜ − 4; ⎟ 4⎠ ⎝ III 0,50 0,50 0,50 2,00 Viết phương trình mặt phẳng qua ba điểm A, B, C (1,00 điểm) Ta có AB = ( 2; − 3; − 1) , AC = ( −2; − 1; − 1) , tích có hướng hai vectơ AB, AC n = ( 2; 4; − 8) Mặt phẳng qua ba điểm A, B, C nhận n làm vectơ pháp tuyến nên có phương trình ( x − ) + ( y − 1) − ( z − ) = ⇔ x + 2y − 4z + = 0,50 0,50 Tìm tọa độ điểm M (1,00 điểm) Ta có AB.AC = nên điểm M thuộc đường thẳng vng góc với mặt phẳng (ABC) trung điểm I ( 0; − 1;1) BC Tọa độ điểm M thỏa mãn hệ phương trình ⎧2x + 2y + z − = ⎪ ⎨ x y +1 z −1 ⎪1 = = −4 ⎩ 0,50 0,50 Suy M ( 2;3; − ) IV 2,00 Tính tích phân (1,00 điểm) π⎞ ⎛ Đặt t = sinx + cosx ⇒ dt = (cosx − sinx)dx = − sin ⎜ x − ⎟ dx 4⎠ ⎝ π Với x = t = 1, với x = t = 0,25 Ta có sin2x + 2(1 + sinx + cosx) = (t + 1) Suy I = − 2 ∫ dt = 2 t +1 (t + 1) 0,50 = 2⎛ 1 ⎞ 4−3 − ⎟= ⎜ ⎝ +1 ⎠ Trang 2/4 0,25 Tìm giá trị lớn giá trị nhỏ biểu thức (1,00 điểm) 2(x + 6xy) 2(x + 6xy) P= = + 2xy + 2y x + y + 2xy + 2y • Nếu y = x = Suy P = • Xét y ≠ Đặt x = ty, 2t + 12t ⇔ (P − 2)t + 2(P − 6)t + 3P = (1) t + 2t + 3 − Với P = 2, phương trình (1) có nghiệm t = − Với P ≠ 2, phương trình (1) có nghiệm P= 0,50 Δ ' = −2P − 6P + 36 ≥ ⇔ − ≤ P ≤ 3 , y= , y=− x = − 10 10 10 10 3 , y=− , y= x = − P = −6 x = 13 13 13 13 Giá trị lớn P 3, giá trị nhỏ P − P = x = V.a 0,50 2,00 Chứng minh công thức tổ hợp (1,00 điểm) n +1 ⎛ 1 ⎞ n + k!(n + − k)!+ (k + 1)!(n − k)! Ta có: ⎜ k + k +1 ⎟ = (n + 1)! n + ⎝ C n +1 C n +1 ⎠ n + k!(n − k)! [(n + − k) + (k + 1)] n+2 n! k!(n − k)! = = k n! Cn = 0,50 0,50 Tìm tọa độ đỉnh C (1,00) • Ký hiệu d1: x − y + = 0, d : 4x + 3y − = Gọi H '(a ; b) điểm đối xứng H qua d1 Khi H ' thuộc đường thẳng AC • u = (1;1) vectơ phương d1 , HH ' = (a + 1; b + 1) vng góc với u ⎛ a −1 b −1 ⎞ ; trung điểm I ⎜ ⎟ HH ' thuộc d1 Do tọa độ H ' ⎠ ⎝ ⎧1(a + 1) + 1(b + 1) = ⎪ nghiệm hệ phương trình ⎨ a − b − ⇒ H ' ( −3;1) ⎪ − +2=0 ⎩ 0,50 • Đường thẳng AC qua H ' vng góc với d nên có vectơ pháp tuyến v = (3; − 4) có phương trình 3(x + 3) − 4(y − 1) = ⇔ 3x − 4y + 13 = ⎧3x − 4y + 13 = ⇒ A(5;7) • Tọa độ A nghiệm hệ phương trình ⎨ ⎩ x−y+2=0 • Đường thẳng CH qua H ( −1; − 1) với vectơ pháp tuyến HA = (3 ; 4) nên có phương trình 3(x + 1) + 4(y + 1) = ⇔ 3x + 4y +7 = ⎧ 3x + 4y + = • Tọa độ C nghiệm hệ phương trình ⎨ ⎩3x − 4y + 13 = ⎛ 10 ⎞ Suy C ⎜ − ; ⎟ ⎝ 4⎠ Trang 3/4 0,50 V.b 2,00 Giải bất phương trình (1,00 điểm) Bất phương trình cho tương đương với x2 + x x2 + x log >1 ⇔ >6 x+4 x+4 0,50 ( x + 3)( x − 8) > x − 5x − 24 >0 ⇔ x+4 x+4 Tập nghiệm bất phương trình : ( −4; − 3) ∪ ( 8; + ∞ ) 0,50 ⇔ Tính thể tích tính cosin góc hai đường thẳng (1,00 điểm) Gọi H hình chiếu S AB, suy SH ⊥ ( ABCD ) Do SH đường cao hình chóp S.BMDN Ta có: SA + SB2 = a + 3a = AB2 nên tam giác SAB vuông S, suy a AB SM = = a Do tam giác SAM đều, suy SH = 2 Diện tích tứ giác BMDN SBMDN = SABCD = 2a a3 Thể tích khối chóp S.BMDN V = SH.SBMDN = (đvtt) 3 S 0,50 E A M D H B N C Kẻ ME // DN (E ∈ AD) a suy AE = Đặt ϕ góc hai đường thẳng SM DN Ta có (SM, ME) = ϕ Theo định lý ba đường vng góc ta có SA ⊥ AE 0,50 a a , ME = AM + AE = 2 a Tam giác SME cân E nên SME = ϕ cosϕ = = a Nếu thí sinh làm không theo cách nêu đáp án mà đợc đủ điểm phần nh đáp án quy định Hết -Suy SE = SA + AE = Trang 4/4 ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối A (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm (1,0 điểm) Khảo sát… • Tập xác định: D = • Sự biến thiên: ⎧ 3⎫ \ ⎨− ⎬ ⎩ 2⎭ - Chiều biến thiên: y ' = −1 ( x + 3) < 0, ∀x ∈ D 0,25 3⎞ ⎛ ⎛ ⎞ Hàm số nghịch biến trên: ⎜ −∞; − ⎟ ⎜ − ; +∞ ⎟ 2⎠ ⎝ ⎝ ⎠ - Cực trị: khơng có - Giới hạn tiệm cận: lim y = lim y = x →−∞ x →+∞ 1 ; tiệm cận ngang: y = 2 lim − y = −∞, lim + y = +∞ ; tiệm cận đứng: x = − ⎛ 3⎞ ⎛ 3⎞ x →⎜ − ⎟ x →⎜ − ⎟ ⎝ 2⎠ 0,25 ⎝ 2⎠ - Bảng biến thiên: x −∞ y' y − − +∞ +∞ − 0,25 −∞ • Đồ thị: x=− y= y 0,25 O x (1,0 điểm) Viết phương trình tiếp tuyến… Tam giác OAB vng cân O, suy hệ số góc tiếp tuyến ±1 Gọi toạ độ tiếp điểm ( x0 ; y0 ) , ta có: −1 = ±1 ⇔ x0 = −2 x0 = −1 (2 x0 + 3) 0,25 0,25 • x0 = −1 , y0 = ; phương trình tiếp tuyến y = − x (loại) 0,25 • x0 = −2 , y0 = ; phương trình tiếp tuyến y = − x − (thoả mãn) Vậy, tiếp tuyến cần tìm: y = − x − 0,25 Trang 1/4 Câu Đáp án Điểm (1,0 điểm) Đường thẳng ∆ có vectơ phương v = (2; 1; −1) mặt phẳng (P) có vectơ pháp tuyến n = (1; −2; 1) M ( ) Gọi H hình chiếu M (P), ta có cos HMC = cos v, n C P ( ) d(M, (P)) = MH = MC.cos HMC = MC cos v, n H = ∆ Ta có: z = (1 + 2 i) (1 − VII.a (1,0 điểm) = 5+ | − − 1| = 6 i) 0,25 0,25 0,25 0,25 i, suy ra: 0,25 i z = 5− 0,25 Phần ảo số phức z bằng: − VI.b 0,25 0,25 (1,0 điểm) (2,0 điểm) Gọi H trung điểm BC, D trung điểm AH, ta có AH ⊥ BC Do tọa độ D(x; y) thỏa mãn hệ: A D •E d B C ⎧x + y − = ⇒ D(2; 2) ⇒ H(− 2; − 2) ⎨ ⎩x − y = 0,25 Đường thẳng BC qua H song song d, suy BC có phương trình: x + y + = 0,25 Điểm B, C thuộc đường thẳng BC: x + y + = B, C đối xứng qua H(− 2; − 2), tọa độ B, C có dạng: B(t; − − t), C(− − t; t) Điểm E(1; −3) nằm đường cao qua đỉnh C tam giác ABC, suy ra: AB CE = ⇔ (t − 6)(5 + t) + (− 10 − t)(− − t) = 0,25 ⇔ 2t2 + 12t = ⇔ t = t = − Ta được: B(0; − 4), C(− 4; 0) B(− 6; 2), C(2; − 6) 0,25 H (1,0 điểm) A • ∆ • B C Đường thẳng ∆ qua điểm M(−2; 2; −3), nhận v = (2; 3; 2) làm vectơ phương Ta có: MA = (2; −2; 1), ⎡v, MA⎤ = (7; 2; −10) ⎣ ⎦ Suy ra: d(A, ∆) = M ⎡v, MA⎤ ⎣ ⎦ = v 49 + + 100 = 4+9+4 0,25 0,25 Gọi (S) mặt cầu tâm A, cắt ∆ B C cho BC = Suy bán kính (S) là: R = Phương trình (S): x2 + y2 + (z + 2)2 = 25 VII.b (1,0 điểm) 0,25 0,25 Ta có: (1 − 3i )3 = − 0,25 Do z = −8 = − − 4i, suy z = − + 4i 1− i 0,25 ⇒ z + i z = − − 4i + (− + 4i)i = − − 8i 0,25 Vậy: z + iz = 0,25 - Hết - Trang 4/4 ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối B (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Điểm Đáp án (1,0 điểm) Khi m = 1, ta có: y = x4 – 4x2 + • Tập xác định: D = R • Sự biến thiên: – Chiều biến thiên: y' = 4x3 – 8x; y' = ⇔ x = x = ± Hàm số nghịch biến khoảng (– ∞; – ) (0; ); đồng biến khoảng (– 2; 0) ( 2; + ∞) – Cực trị: Hàm số đạt cực tiểu x = ± 2; yCT = – 3, đạt cực đại x = 0; yCĐ = – Giới hạn: lim y = lim y = + ∞ x→ − ∞ 0,25 0,25 x→ + ∞ – Bảng biến thiên: +∞ x –∞ – y' – + – + +∞ y –3 –3 +∞ 0,25 y • Đồ thị: − 2 –2 O x 0,25 –3 (1,0 điểm) y'(x) = 4x3 – 4(m + 1)x = 4x(x2 – m – 1); y'(x) = ⇔ x = x2 = m + (1) Đồ thị hàm số có ba điểm cực trị, khi: (1) có hai nghiệm phân biệt khác ⇔ m > – (*) 0,25 ⇔ m = ± 2; thỏa mãn (*) Vậy, giá trị cần tìm: m = – 2 m = + 2 (2,0 điểm) 0,25 Khi đó: A(0; m), B( − m + 1; – m2 – m – 1) C( m + 1; – m2 – m – 1) Suy ra: OA = BC ⇔ m2 = 4(m + 1) ⇔ m2 – 4m – = II 0,25 0,25 (1,0 điểm) Phương trình cho tương đương với: sinx(1 + cos2x) + sinxcosx = cos2x + sinx + cosx ⇔ cos2x(sinx – 1) + cosx(sinx – 1) = ⇔ (sinx – 1)(cos2x + cosx) = • sinx = ⇔ x = π + k2π 0,25 0,25 0,25 2π π +k 3 2π π π Vậy, phương trình cho có nghiệm: x = + k2π; x = + k (k ∈ Z) 3 • cos2x = – cosx = cos(π – x) ⇔ x = Trang 1/4 0,25 Câu Điểm Đáp án (1,0 điểm) Điều kiện: – ≤ x ≤ (*) ( ) + x − 2 − x + 4 − x =10 − x (1) 0,25 Đặt t = + x – 2 − x , (1) trở thành: 3t = t2 ⇔ t = t = • t = 0, suy ra: + x = 2 − x ⇔ + x = 4(2 – x) ⇔ x = , thỏa mãn (*) • t = 3, suy ra: + x = 2 − x + 3, vô nghiệm (do + x ≤ 2 − x + ≥ với x ∈ [– 2; 2]) Vậy, phương trình cho có nghiệm: x = 0,25 Khi đó, phương trình cho tương đương: π III (1,0 điểm) I = π 3 0,25 π 0,25 + x sin x ∫ cos2 x dx = ∫ cos2 x dx + ∫ cos x sin x dx x 0,25 0,25 π π dx = ( tan x ) 03 = ∫ cos2 x Ta có: π và: π 3 x sin x ∫ cos2 x dx = π π ⎛ ⎞ ⎛ x ⎞ ∫ x d ⎜ cos x ⎟ = ⎜ cos x ⎟ – ⎠ ⎝ ⎠ ⎝ π 3 2π dx ∫ cos x = + d sin x x −1 ∫ sin π = 2π ⎛ 1 ⎞ + ∫⎜ − ⎟ d sin x ⎝ sin x − sin x + ⎠ π = IV (1,0 điểm) 0,25 2π ⎛ sin x − ⎞ 2π = + ⎜ ln + ln(2 − 3) Vậy, I = ⎝ sin x + ⎟ 3 ⎠ + 2π + ln(2 − 3) Gọi O giao điểm AC BD ⇒ A1O ⊥ (ABCD) Gọi E trung điểm AD ⇒ OE ⊥ AD A1E ⊥ AD 0,25 0,25 ⇒ A1 EO góc hai mặt phẳng (ADD1A1) (ABCD) ⇒ A1 EO = 60 B1 C1 D1 A1 B A E O H a AB tan A1 EO = 2 Diện tích đáy: SABCD = AB.AD = a Ta có: B1C // A1D ⇒ B1C // (A1BD) ⇒ d(B1, (A1BD)) = d(C, (A1BD)) Hạ CH ⊥ BD (H ∈ BD) ⇒ CH ⊥ (A1BD) ⇒ d(C, (A1BD)) = CH B B B CD.CB Suy ra: d(B1, (A1BD)) = CH = B V (1,0 điểm) 0,25 3a Thể tích: VABCD A1B1C1D1 = SABCD.A1O = C D ⇒ A1O = OE tan A1 EO = CD + CB = a 0,25 0,25 Với a, b dương, ta có: 2(a2 + b2) + ab = (a + b)(ab + 2) 2 ⎛a b⎞ ⎛1 1⎞ + ⎟ + = (a + b) + ⎜ + ⎟ ⎝b a⎠ ⎝a b⎠ ⇔ 2(a + b ) + ab = a b + ab + 2(a + b) ⇔ ⎜ Trang 2/4 0,25 Câu Điểm Đáp án ⎛1 1⎞ ⎛1 1⎞ ⎞ ⎛a b (a + b) + ⎜ + ⎟ ≥ 2(a + b) ⎜ + ⎟ = 2 ⎜ + + ⎟ , suy ra: ⎝a b⎠ ⎝b a ⎠ ⎝a b⎠ a b ⎛a b⎞ ⎛a b ⎞ 2⎜ + ⎟ + ≥ 2⎜ + + 2⎟ ⇒ + ≥ b a ⎝b a ⎠ ⎝b a⎠ a b + , t ≥ , suy ra: P = 4(t3 – 3t) – 9(t2 – 2) = 4t3 – 9t2 – 12t + 18 b a Xét hàm f(t) = 4t3 – 9t2 – 12t + 18, với t ≥ 0,25 Đặt t = 0,25 23 ⎛5⎞ Ta có: f '(t ) = 6(2t2 – 3t – 2) > 0, suy ra: f (t ) = f ⎜ ⎟ = – ⎡5 ⎞ ⎝2⎠ ⎢ 2;+ ∞ ⎟ ⎣ Vậy, minP = – ⎠ 0,25 23 a b ⎛1 1⎞ ; khi: + = a + b = ⎜ + ⎟ b a ⎝a b⎠ ⇔ (a; b) = (2; 1) (a; b) = (1; 2) VI.a (1,0 điểm) (2,0 điểm) d O• N ∆ M N ∈ d, M ∈ ∆ có tọa độ dạng: N(a; 2a – 2), M(b; b – 4) O, M, N thuộc đường thẳng, khi: 4a a(b – 4) = (2a – 2)b ⇔ b(2 – a) = 4a ⇔ b = 2−a 0,25 OM.ON = ⇔ (5a2 – 8a + 4)2 = 4(a – 2)2 0,25 2 ⇔ (5a – 6a)(5a – 10a + 8) = ⇔ 5a – 6a = ⇔ a = a = ⎛6 2⎞ Vậy, N(0; – 2) N ⎜ ; ⎟ ⎝5 5⎠ 0,25 0,25 (1,0 điểm) ⎧ x − y +1 z = = ⎪ Tọa độ điểm I nghiệm hệ: ⎨ −2 −1 ⇒ I(1; 1; 1) ⎪x + y + z − = ⎩ Gọi M(a; b; c), ta có: ⎧a + b + c − = ⎪ M ∈ (P), MI ⊥ ∆ MI = 14 ⇔ ⎨a − 2b − c + = ⎪(a − 1) + (b − 1) + (c − 1) = 224 ⎩ 0,25 0,25 ⎧b = 2a − ⎪ ⇔ ⎨c = −3a + ⎪(a − 1) + (2a − 2) + (−3a + 3) = 224 ⎩ ⇔ (a; b; c) = (5; 9; – 11) (a; b; c) = (– 3; – 7; 13) Vậy, M(5; 9; – 11) M(– 3; – 7; 13) VII.a 0,25 0,25 Gọi z = a + bi với a, b ∈ R a2 + b2 ≠ 0, ta có: (1,0 điểm) z− 5+i 5+i –1=0 − = ⇔ a – bi – z a + bi Trang 3/4 0,25 Câu Điểm Đáp án 2 2 ⇔ a + b – – i – a – bi = ⇔ (a + b – a – 5) – (b + )i = ⎧a + b2 − a − = ⎪ ⇔ ⎨ ⎪b + = ⎩ (2,0 điểm) 0,25 ⎪b = − ⎩ ⇔ (a; b) = (– 1; – VI.b ⎧a − a − = ⎪ ⇔ ⎨ ) (a; b) = (2; – 0,25 ) Vậy z = – – i z = – i 0,25 (1,0 điểm) ⎛5 ⎞ BD = ⎜ ; ⎟ ⇒ BD // EF ⇒ tam giác ABC cân A; ⎝2 ⎠ 0,25 ⇒ đường thẳng AD vng góc với EF, có phương trình: x – = 25 ⎛ 1⎞ F có tọa độ dạng F(t; 3), ta có: BF = BD ⇔ ⎜ t − ⎟ + 22 = ⇔ t = – t = ⎝ 2⎠ • t = – ⇒ F(– 1; 3); suy đường thẳng BF có phương trình: 4x + 3y – = A F E B D 0,25 7⎞ ⎛ A giao điểm AD BF ⇒ A ⎜ 3; − ⎟ , khơng thỏa mãn 3⎠ ⎝ u cầu (A có tung độ dương) • t = ⇒ F(2; 3); suy phương trình BF: 4x – 3y + = ⎛ 13 ⎞ ⎛ 13 ⎞ C ⇒ A ⎜ 3; ⎟ , thỏa mãn yêu cầu Vậy, có: A ⎜ 3; ⎟ ⎝ 3⎠ ⎝ 3⎠ 0,25 0,25 (1,0 điểm) M ∈ ∆, suy tọa độ M có dạng: M(– + t; + 3t; – – 2t) ⇒ AM = (t; 3t; – – 2t) AB = (– 1; – 2; 1) ⇒ ⎡ AM , AB ⎤ = (– t – 12; t + 6; t) ⎣ ⎦ 0,25 ⇔ t2 + 12t = ⇔ t = t = – 12 Vậy, M(– 2; 1; – 5) M(– 14; – 35; 19) (1,0 điểm) 0,25 S∆MAB = ⇔ (t + 12)2 + (t + 6)2 + t2 = 180 VII.b 0,25 0,25 ⎛1 ⎞ π π⎞ ⎛ + i = 2⎜ + ⎜ 2 i ⎟ = ⎜ cos + i sin ⎟ + i = ⎟ ⎝ ⎠ ⎝ ⎠ ( cos π + i sin π ) suy ra: z = 3π 3π ⎞ ⎛ 2 ⎜ cos + i sin ⎟ 4 ⎠ ⎝ π π⎞ ⎛ ⎜ cos + i sin ⎟ ; 4⎠ ⎝ 0,25 0,25 π π⎞ ⎛ = 2 ⎜ cos + i sin ⎟ 4⎠ ⎝ 0,25 = + 2i Vậy số phức z có: Phần thực phần ảo 0,25 - Hết - Trang 4/4 ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = x − 2( m + 1) x + m (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh tam giác vng Câu (1,0 điểm) Giải phương trình sin x + cos x = cos x − ⎧ x3 − x − x + 22 = y + y − y ⎪ ( x, y ∈ ) Câu (1,0 điểm) Giải hệ phương trình ⎨ x + y2 − x + y = ⎪ ⎩ + ln( x + 1) dx x2 Câu (1,0 điểm) Cho hình chóp S ABC có đáy tam giác cạnh a Hình chiếu vng góc S mặt phẳng (ABC) điểm H thuộc cạnh AB cho HA = HB Góc đường thẳng SC mặt phẳng (ABC) 60o Tính thể tích khối chóp S.ABC tính khoảng cách hai đường thẳng SA BC theo a Câu (1,0 điểm) Cho số thực x, y , z thỏa mãn điều kiện x + y + z = Tìm giá trị nhỏ biểu thức Câu (1,0 điểm) Tính tích phân I = ∫ P = | x− y | + | y − z | + | z − x | − x + y + z II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vng ABCD Gọi M trung điểm 11 cạnh BC, N điểm cạnh CD cho CN = ND Giả sử M đường thẳng AN có ; 2 phương trình x − y − = Tìm tọa độ điểm A x +1 y z − Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = điểm I (0; 0;3) Viết phương trình mặt cầu (S) có tâm I cắt d hai điểm A, B cho tam giác IAB vuông I n Câu 9.a (1,0 điểm) Cho n số nguyên dương thỏa mãn 5Cn −1 = Cn Tìm số hạng chứa x khai ( ( ) ) n nx − , x ≠ triển nhị thức Niu-tơn 14 x B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C ): x + y = Viết phương trình tắc elip (E), biết (E) có độ dài trục lớn (E) cắt (C) bốn điểm tạo thành bốn đỉnh hình vng x +1 y z − Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : , mặt = = 1 phẳng ( P ): x + y − z + = điểm A(1; −1; 2) Viết phương trình đường thẳng ∆ cắt d (P) M N cho A trung điểm đoạn thẳng MN 5( z + i ) Câu 9.b (1,0 điểm) Cho số phức z thỏa mãn = − i Tính mơđun số phức w = + z + z z +1 HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B (Đáp án - thang điểm gồm 04 trang) Câu Đáp án Điểm a) (1,0 điểm) (2,0 điểm) Khi m = 1, ta có: y = x3 − 3x + • Tập xác định: D = • Sự biến thiên: 0,25 − Chiều biến thiên: y ' = x − x; y ' = ⇔ x = x = Các khoảng đồng biến: (− ∞; 0) (2; + ∞) , khoảng nghịch biến: (0; 2) − Cực trị: Hàm số đạt cực đại x = 0, yCĐ = 3; đạt cực tiểu x = 2, yCT = −1 − Giới hạn: lim y = −∞ lim y = + ∞ x→−∞ − Bảng biến thiên: 0,25 x→+ ∞ x −∞ y' + +∞ – + +∞ 0,25 y −∞ • Đồ thị: –1 y 0,25 O x −1 b) (1,0 điểm) y ' = x − 6mx; y ' = ⇔ x = x = 2m Đồ thị hàm số có điểm cực trị m ≠ (*) Các điểm cực trị đồ thị A(0; 3m3 ) B (2m; − m3 ) Suy OA = | m3 | d ( B, (OA)) = | m | 0,25 0,25 S ∆OAB = 48 ⇔ 3m4 = 48 0,25 ⇔ m = ± 2, thỏa mãn (*) 0,25 Trang 1/4 Phương trình cho tương đương với: cos x + sin x = cos x − sin x (1,0 điểm) π π ⇔ cos x − = cos x + 3 0,25 ) ( ) 0,25 ( ) 0,25 ( π π ⇔ x − = ± x + + k 2π (k ∈ ) 3 ⇔ x= 2π 2π + k 2π x = k (k ∈ ) 3 0,25 Điều kiện: ≤ x ≤ − x ≥ + (*) (1,0 điểm) Nhận xét: x = nghiệm bất phương trình cho Với x > 0, bất phương trình cho tương đương với: x+ + x + − ≥ (1) x x x+ Đặt t = x + (2), bất phương trình (1) trở thành x ⇔ t ≥ Thay vào (2) ta ⎡3 − t < t − ≥ − t ⇔ ⎢⎧3 − t ≥ ⎢⎨ ⎢ t − ≥ (3 − t ) ⎣⎩ ≥ ⇔ x ≥ x x≤ 0,25 0,25 0,25 x ≥ Kết hợp (*) nghiệm x = 0, ta tập nghiệm bất phương trình cho là: ⎡0; ⎤ ∪ [4; +∞) ⎢ 4⎥ ⎣ ⎦ ⇔0< x≤ (1,0 điểm) Đặt t = x , suy dt = xdx Với x = t = 0; với x =1 t =1 Khi I = = ∫ ∫( ∫ ) ( 0,25 ) 1 dt = ln|t + 2| − ln|t +1| − t + t +1 = ln3 − (1,0 điểm) 0,25 x 2 xdx td t = ( x +1)( x + 2) (t +1)(t + 2) 0 0,25 ln2 0,25 Gọi D trung điểm cạnh AB O tâm ∆ABC Ta có AB ⊥ CD AB ⊥ SO nên AB ⊥ ( SCD ), AB ⊥ SC S Mặt khác SC ⊥ AH , suy SC ⊥ ( ABH ) Ta có: CD = H C A D 0,25 a a a 33 nên SO = SC −OC = , OC = 3 SO.CD a 11 11a Do DH = = Suy S ∆ABH = AB.DH = SC Ta có SH = SC − HC = SC − CD − DH = O B Do VS ABH 11a = SH S ∆ABH = 96 Trang 2/4 7a 0,25 0,25 0,25 0,25 Với x + y + z = x + y + z = 1, ta có: (1,0 điểm) = ( x + y + z ) = x + y + z + x( y + z ) + yz =1− x + yz , nên yz = x − y + z − x2 1 − x2 6 Mặt khác yz ≤ = (*) , suy ra: x − ≤ , − ≤ x≤ 2 2 3 0,25 Khi đó: P = x5 + ( y + z )( y + z ) − y z ( y + z ) ( ) 12 x 1 x = (2 x3 − x) = x5 + (1− x )⎡− x(1− x ) + x x − ⎤ + x − ⎢ ⎣ ⎦ 2⎥ ⎡ 6 6⎤ Xét hàm f ( x) = x3 − x ⎢ − ; ⎥ , suy f '( x) = x − 1; f '( x) = ⇔ x = ± ⎥ ⎢ ⎣ ⎦ ⎛ 6⎞ ⎛ 6⎞ ⎛ 6⎞ ⎛ 6⎞ 6 , f ⎜ ⎟ = f ⎜− Ta có f ⎜ − ⎟= f ⎜ ⎟=− ⎟ = Do f ( x) ≤ 9 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = x5 + (1− x ) ⎡( y + z )( y + z ) − yz ( y + z )⎤ + x − ⎣ ⎦ 0,25 ( ) ( ) Suy P ≤ Khi x = 36 6 dấu xảy Vậy giá trị lớn P , y = z =− 36 7.a (1,0 điểm) (C) A 0,25 d I (C1) có tâm gốc tọa độ O Gọi I tâm đường tròn (C) cần viết phương trình, ta có AB ⊥ OI Mà AB ⊥ d O ∉ d nên OI//d, OI có phương trình y = x 0,25 0,25 Mặt khác I ∈ (C2 ), nên tọa độ I thỏa mãn hệ: ⎧y = x ⎧x = ⎪ ⇔⎨ ⇒ I (3;3) ⎨ 2 ⎪x + y −12 x +18 = ⎩ y = ⎩ 0,25 Do (C) tiếp xúc với d nên (C) có bán kính R = d ( I , d ) = 2 0,25 Vậy phương trình (C) ( x − 3) + ( y − 3) = 0,25 B (C1) (C2) 8.a (1,0 điểm) Gọi (S) mặt cầu cần viết phương trình I tâm (S) Do I ∈ d nên tọa độ điểm I có dạng I (1+ 2t ; t ; − 2t ) 0,25 Do A, B∈( S ) nên AI = BI , suy (2t −1) + (t −1) + 4t = (2t + 3) + (t −3) + (2t + 2) ⇒ t =−1 0,25 Do I (−1; − 1; 2) bán kính mặt cầu IA = 17 0,25 Vậy, phương trình mặt cầu (S) cần tìm ( x + 1) + ( y + 1) + ( z − 2) = 17 0,25 9.a (1,0 điểm) Số cách chọn học sinh lớp C25 =12650 0,25 2 Số cách chọn học sinh có nam nữ C15 C10 + C15 C10 + C15 C10 0,25 = 11075 0,25 Xác suất cần tính P = 11075 443 = 12650 506 Trang 3/4 0,25 7.b (1,0 điểm) y B H A C O D x2 + y2 =1( a > b > 0) Hình thoi ABCD có a b2 AC = BD A, B, C, D thuộc (E) suy OA = 2OB Giả sử ( E ): 0,25 Khơng tính tổng qt, ta xem A(a;0) x B 0; a Gọi H hình chiếu vng góc O AB, suy OH bán kính đường tròn (C ) : x + y = 0,25 1 1 = = + = + 2 2 OH OA OB a a2 0,25 ( ) Ta có: x2 y + = Suy a = 20, b2 = Vậy phương trình tắc (E) 20 8.b Do B ∈ Ox, C ∈ Oy nên tọa độ B C có dạng: B(b; 0; 0) C (0; c; 0) (1,0 điểm) b c Gọi G trọng tâm tam giác ABC, suy ra: G ; ; 3 ( ) Ta có AM = (1;2; −3) nên đường thẳng AM có phương trình x y z−3 = = −3 b c −2 Do G thuộc đường thẳng AM nên = = Suy b = c = −3 Do phương trình mặt phẳng (P) x y z + + = 1, nghĩa ( P) : x + y + z − 12 = 9.b Phương trình bậc hai z − i z − = có biệt thức ∆ = (1,0 điểm) Suy phương trình có hai nghiệm: z1 = + i z2 = −1 + 3i 0,25 0,25 0,25 0,25 0,25 0,25 0,25 π π • Dạng lượng giác z1 z1 = 2⎛cos + isin ⎞ ⎜ ⎟ 3⎠ ⎝ 0,25 2π 2π • Dạng lượng giác z2 z2 = 2⎛cos + isin ⎞ ⎜ ⎟ 3⎠ ⎝ 0,25 HẾT Trang 4/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−− − − − −− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−− −−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = −x3 + 3x2 + 3mx − (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) nghịch biến khoảng (0; + ∞) √ π Câu (1,0 điểm) Giải phương trình + tan x = 2 sin x + √ √ x + + x − − y4 + = y Câu (1,0 điểm) Giải hệ phương trình x2 + 2x(y − 1) + y − 6y + = (x, y ∈ R) Caâu (1,0 điểm) Tính tích phân x2 − ln x dx x2 I= Câu (1,0 điểm) Cho hình chóp S.ABC có đáy tam giác vuông A, ABC = 30◦ , SBC tam giác cạnh a mặt bên SBC vuông góc với đáy Tính theo a thể tích khối chóp S.ABC khoảng cách từ điểm C đến mặt phẳng (SAB) Câu (1,0 điểm) Cho số thực dương a, b, c thỏa mã√ điều kiện (a + c)(b + c) = 4c2 Tìm giá trị n 3 32a 32b a + b2 nhỏ biểu thức P = + − (b + 3c)3 (a + 3c)3 c II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d : 2x + y + = A(−4; 8) Gọi M điểm đối xứng B qua C, N hình chiếu vuông góc B đường thẳng MD Tìm tọa độ điểm B C, biết N(5; −4) x−6 y+1 z+2 Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : = = −3 −2 điểm A(1; 7; 3) Viết phương trình mặt phẳng (P ) qua A vuông góc với ∆ Tìm tọa độ điểm √ M thuộc ∆ cho AM = 30 Câu 9.a (1,0 điểm) Gọi S tập hợp tất số tự nhiên gồm ba chữ số phân biệt chọn từ chữ số 1; 2; 3; 4; 5; 6; Xác định số phần tử S Chọn ngẫu nhiên số từ S, tính xác suất để số chọn số chẵn B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong √ t phẳng với hệ tọa độ Oxy, cho đường thẳng ∆ : x − y = Đường mặ √ tròn (C) có bán kính R = 10 cắt ∆ hai điểm A B cho AB = Tiếp tuyến (C) A B cắt điểm thuộc tia Oy Viết phương trình đường tròn (C) Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phaúng (P ) : 2x + 3y + z − 11 = mặt cầu (S) : x2 + y + z − 2x + 4y − 2z − = Chứng minh (P ) tiếp xúc với (S) Tìm tọa độ tiếp điểm (P ) (S) √ Câu 9.b (1,0 điểm) Cho số phức z = + i Viết dạng lượng giác z Tìm phần thực phần ảo số phức w = (1 + i)z5 −−− − −−Hết− − − − −− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Soá baùo danh: ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối B (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu (2,0 điểm) Đáp án Điểm a (1,0 điểm) Khi m = −1 ta có y = x3 − x • Tập xác định: D = 0,25 • Sự biến thiên: - Chiều biến thiên: y ' = x − 6; y ' = ⇔ x = ±1 Các khoảng đồng biến: (−∞; − 1) (1; + ∞); khoảng nghịch biến: (−1; 1) - Cực trị: Hàm số đạt cực tiểu x = 1, yCT = −4; đạt cực đại x = −1, yCĐ = 0,25 - Giới hạn: lim y = − ∞; lim y = + ∞ x→−∞ x→+∞ - Bảng biến thiên: x −∞ −1 y' + +∞ − + +∞ y 0,25 −4 −∞ • Đồ thị: y 0,25 −1 O x −4 b (1,0 điểm) Ta có y ' = x − 6(m + 1) x + 6m; y ' = ⇔ x = x = m 0,25 Điều kiện để đồ thị hàm số có hai điểm cực trị m ≠ 0,25 Ta có A(1;3m −1), B(m; −m3 + 3m2 ) Hệ số góc đường thẳng AB k = −(m −1)2 Đường thẳng AB vng góc với đường thẳng y = x + k = −1 0,25 ⇔ m = m = Vậy giá trị m cần tìm m = m = Trang 1/4 0,25 Câu (1,0 điểm) (1,0 điểm) Đáp án Điểm Phương trình cho tương đương với sin x + cos x = 0,25 π ⇔ cos ⎛ x + ⎞ = cos x ⎜ ⎟ 2⎠ ⎝ π ⇔ x + = ± x + k 2π (k ∈ ) ⎡ x = − π + k 2π ⎢ ⇔⎢ (k ∈ ) π ⎢ x = − + k 2π ⎢ ⎣ 14 0,25 0,25 0,25 ⎧ x + y − xy + x − y + = ⎪ ⎨ ⎪4 x − y + x + = x + y + x + y ⎩ (1) 0,25 (2) Điều kiện: x + y ≥ 0, x + y ≥ Từ (1) ta y = x + y = x + • Với y = x + 1, thay vào (2) ta 3x − x + = 3x +1 + x + ⇔ 3( x − x) + ( x +1− 3x +1) + ( x + − x + 4) = 0,25 1 ⎛ ⎞ ⇔ ( x − x) ⎜ + + ⎟=0 x +1+ 3x +1 x + + x + ⎠ ⎝ ⇔ x − x = ⇔ x = x = Khi ta nghiệm ( x; y ) (0;1) (1;2) 0,25 • Với y = x + 1, thay vào (2) ta − 3x = x +1 + x + ⇔ 3x + ( x +1 −1) + ( x + − 2) = ⎞ ⎛ ⇔ x ⎜ 3+ + ⎟ = ⇔ x = Khi ta nghiệm ( x; y ) (0; 1) x +1 +1 9x + + ⎠ ⎝ 0,25 Đối chiếu điều kiện ta nghiệm ( x; y ) hệ cho (0;1) (1;2) (1,0 điểm) Đặt t = − x ⇒ tdt = − xdx Khi x = t = 2, x = t = Suy I = ∫ 0,25 t dt 0,25 t3 = = (1,0 điểm) 0,25 2 −1 0,25 a Mà (SAB) vuông góc với (ABCD) theo giao tuyến AB, nên SH ⊥ (ABCD) a3 Do VS ABCD = SH S ABCD = S I A D K H B 0,25 0,25 Gọi H trung điểm AB, suy SH ⊥ AB SH = C Do AB || CD H∈AB nên d ( A,( SCD )) = d ( H ,( SCD)) Gọi K trung điểm CD I hình chiếu vng góc H SK Ta có HK⊥CD Mà SH⊥CD ⇒ CD⊥(SHK) ⇒ CD ⊥ HI Do HI ⊥(SCD) Suy d ( A,( SCD)) = HI = Trang 2/4 SH HK SH + HK = a 21 0,25 0,25 Câu Đáp án (1,0 điểm) Ta có: (a + b) (a + 2c)(b + 2c) ≤ (a + b) a + b + 4c = a + b + 2ab + 4ac + 4bc ≤ 2(a + b + c ) 2 Đặt t = a + b + c + 4, suy t > P ≤ − t 2(t − 4) Điểm Xét f (t ) = 9t −(t − 4)(4t + 7t − 4t − 16) − , với t > Ta có f '(t ) = − + = t 2(t − 4) t (t − 4) t (t − 4)2 0,25 0,25 Với t > ta có 4t + 7t − 4t − 16 = 4(t − 4) + t (7t − 4) > Do f '(t ) = ⇔ t = Bảng biến thiên: t +∞ f '(t ) + f (t ) −∞ − 0,25 Từ bảng biến thiên ta P ≤ 5 Khi a = b = c = ta có P = Vậy giá trị lớn P 8 7.a (1,0 điểm) B 0,25 Gọi I giao điểm AC BD ⇒ IB = IC C Mà IB ⊥ IC nên ΔIBC vuông cân I ⇒ ICB = 45o BH ⊥ AD ⇒ BH ⊥ BC⇒ ΔHBC vuông cân B I 0,25 ⇒ I trung điểm đoạn thẳng HC H A D Do CH ⊥ BD trung điểm I CH thuộc BD nên tọa ⎧2( x + 3) − ( y − 2) = ⎪ độ điểm C thỏa mãn hệ ⎨ x − ⎛ y + ⎞ ⎪ + ⎜ ⎟ − = ⎩ ⎝ ⎠ Do C (−1;6) CH 10 IC IB BC = = = ⇒ ID = 3IC ⇒ CD = IC + ID = IC 10 = = ID ID AD ⎡t = Ta có D (6 − 2t ; t ) CD = suy (7 − 2t )2 + (t − 6)2 = 50 ⇔ ⎢ ⎣t = Do D (4;1) D(−8;7) Ta có 8.a (1,0 điểm) 0,25 (P) có véctơ pháp tuyến n = (2;3; −1) 0,25 0,25 0,25 Đường thẳng Δ qua A vng góc với (P) nhận n làm véctơ phương, nên có phương trình 0,25 x−3 y −5 z = = −1 Gọi B điểm đối xứng A qua (P), suy B thuộc Δ Do B (3 + 2t ;5 + 3t ; −t ) ⎛ 10 + 3t ⎞ ⎛ −t ⎞ Trung điểm đoạn thẳng AB thuộc (P) nên 2(3 + t ) + ⎜ ⎟ − ⎜ ⎟ − = ⇔ t = −2 ⎝ ⎠ ⎝ 2⎠ Do B (−1; −1; 2) 9.a (1,0 điểm) 0,25 0,25 Số cách chọn viên bi, viên từ hộp là: 7.6 = 42 0,25 Số cách chọn viên bi đỏ, viên từ hộp là: 4.2 = 0,25 Số cách chọn viên bi trắng, viên từ hộp là: 3.4 = 12 0,25 Xác suất để viên bi lấy có màu là: p = Trang 3/4 +12 10 = 42 21 0,25 Câu 7.b (1,0 điểm) A N M B 8.b (1,0 điểm) H D C Đáp án Điểm Ta có H ∈ AH AH ⊥ HD nên AH có phương trình: 0,25 x + y − = Do A(3 − 2a; a ) Do M trung điểm AB nên MA = MH Suy (3 − 2a)2 + (a −1)2 = 13 ⇔ a = a = − 0,25 Do A khác H nên A(−3;3) Phương trình đường thẳng AD y − = Gọi N điểm đối xứng M qua AD Suy N ∈ AC tọa độ điểm N thỏa mãn hệ 0,25 ⎧1 + y − = ⎪ ⇒ N (0;5) ⎨ ⎪ ⎩1.x + 0.( y −1) = Đường thẳng AC có phương trình: x − y + 15 = Đường thẳng BC có phương trình: x − y − = 0,25 ⎧2 x − y − = Suy tọa độ điểm C thỏa mãn hệ: ⎨ ⎩ x − y + 15 = Do C (9;11) Ta có AB = ( −2;3;2 ) , vectơ phương Δ u = (−2;1;3) 0,25 Đường thẳng vuông góc với AB Δ, có vectơ phương v = ⎡ AB, u ⎤ ⎣ ⎦ 0,25 Suy v = ( 7; 2; ) 0,25 x − y + z −1 = = ⎧ x + y = x −1 Điều kiện: x > 1; y > −1 Hệ cho tương đương với ⎨ ⎩log3 ( x −1) = log3 ( y +1) Đường thẳng qua A, vng góc với AB Δ có phương trình là: 9.b (1,0 điểm) ⎧ x2 − 2x − = ⇔⎨ ⎩y = x−2 ⎡ x = −1, y = −3 ⇔⎢ ⎣ x = 3, y = Đối chiếu điều kiện ta nghiệm ( x; y ) hệ cho (3;1) - Hết - Trang 4/4 0,25 0,25 0,25 0,25 0,25 ... ? ?b a? ?? ? ?a b? ?? ⇔ 2 (a + b ) + ab = a b + ab + 2 (a + b) ⇔ ⎜ Trang 2/4 0,25 Câu Điểm Đáp án ⎛1 1⎞ ⎛1 1⎞ ⎞ ? ?a b (a + b) + ⎜ + ⎟ ≥ 2 (a + b) ⎜ + ⎟ = 2 ⎜ + + ⎟ , suy ra: ? ?a b? ?? ? ?b a ⎠ ? ?a b? ?? a b ? ?a b? ?? ? ?a b. .. a, b, c dương thoả mãn điều kiện c = a + b − ab = (a + b) − 3ab ≥ (a + b) − (a + b) = (a + b) ⇒ a + b ≤ 2c (1) 4 0,25 0,25 a + b3 + 3abc ≤ 5c ⇔ (a + b) (a + b − ab) + 3abc ≤ 5c ⇔ (a + b) c + 3abc... tích đáy: SABCD = AB.AD = a Ta có: B1 C // A1 D ⇒ B1 C // (A1 BD) ⇒ d (B1 , (A1 BD)) = d(C, (A1 BD)) Hạ CH ⊥ BD (H ∈ BD) ⇒ CH ⊥ (A1 BD) ⇒ d(C, (A1 BD)) = CH B B B CD.CB Suy ra: d (B1 , (A1 BD)) = CH = B V (1,0