Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 62 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
62
Dung lượng
1,87 MB
Nội dung
CHỦ ĐIỂM 1 MỘT SỐ DẠNG TOÁN ỨNG DỤNG HÀM SỐ VẤN ĐỀ 1 VẼ ĐỒ THỊ CỦA HÀM CHỨA DẤU TRỊ TUYỆT ĐỐI A. PHƯƠNG PHÁP: Bài giảng B. BÀI TẬP ÁP DỤNG: Bài 1: 1) Khảo sát và vẽ đồ thị (C) của hàm số: y = f(x) = x 1 x 2 + + 2) Từ (C) hãy suy ra đồ thị của các hàm số: a) y = | x | 1 | x | 2 + + b) y = | x 1| x 2 + + c) y = x 1 | | x 2 + + d) y = x 1 | x 2| + + Bài 2: Tìm m để phương trình sau có 4 nghiệm phân biệt: 2 x 3x 3 | x 1| + + + = m Bài 3: 1) Hãy vẽ đồ thị (C 1 ) của hàm số: 2 | x | y | x | 1 = − 2) Dùng (C 1 ) để biện luận theo m số nghiệm của phương trình: (m – 2).|x| - m = 0 trên đoạn [-1, 2]. (ĐH QG TP HCM KD) Bài 4: Cho hàm số: y = 2x 3 – 9x 2 + 12x – 4 (C) (ĐH KA – 2006) Tìm m để phương trình sau có 6 nghiệm phân biệt: y = 2|x| 3 – 9x 2 + 12|x| = m 1 VẤN ĐỀ 2: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG ĐI QUA CÁC ĐIỂM CỰC TRỊ CỦA ĐỒ THỊ HÀM SỐ A. PHƯƠNG PHÁP: Bài giảng B. BÀI TẬP ÁP DỤNG: Bài 1: Cho hàm số y = x 3 – 3mx 2 + 9x + 3m – 5 a) Định m để đồ thị hàm số có 2 điểm cực trị b) Viết phương trình đường thẳng qua hai điểm cực trị đó Bài 2: Cho hàm số: y = – x 3 + 3mx 2 +3(1 - m 2 )x + m 3 - m 2 (C m ) a) Định m để đồ thị hàm số có 2 điểm cực trị b)Viết phương trình đường thẳng qua 2 điểm cực trị của (C m ) (ĐH KA – 2002) Bài 3: Cho hàm số y = x 3 – 3x 2 - 9x + m a) Định m để đồ thị hàm số có 2 điểm cực trị b) Viết phương trình đường thẳng qua hai điểm cực trị đó Bài 4: Cho hàm số 2 x (m 1)x m 1 y x m + + − + = − a) CMR với mọi m, hàm số luôn có CĐ, CT. b) Tìm m để y CĐ .y CT > 0 c) Viết phương trình qua hai điểm CĐ và CT của đồ thị. VẤN ĐỀ 3: MỘT SỐ DẠNG TOÁN ỨNG DỤNG ĐỒ THỊ CỦA HÀM BẬC BA 2 A. Phương pháp: Cho hàm số bậc 3: f(x) = ax 3 + bx 2 + cx + d (C), ta có các bài toán sau: g (C) cắt Ox tại 3 điểm phân biệt ⇔ ' f (x) max min > 0 y .y 0 ∆ < g (C) cắt Ox tại 3 điểm phân biệt có hđ dương ⇔ ' f (x) max min max min > 0 y .y 0 x 0,x 0 ad 0 ∆ < > > < g (C) cắt Ox tại 3 điểm phân biệt có hđ âm ⇔ ' f (x) max min max min > 0 y .y 0 x 0,x 0 ad 0 ∆ < < < > g (C) cắt trục hoành tại 2 điểm (sẽ có 1 tiếp điểm: (C) tiếp xúc với Ox) ⇔ ' f (x) max min > 0 y .y 0 ∆ = hay hệ f (x) 0 f (x) 0 ' = = có nghiệm (Điều kiện tiếp xúc) g (C) cắt trục hoành tại 1 điểm ⇔ ' ' f (x) f (x) max min 0 > 0 y .y 0 ∆ ≤ ∆ > g Ngoài ra dựa vào đồ thị ta còn có nhiều bài toán khác… B. BÀI TẬP ÁP DỤNG: Bài 1: Tìm m để (C m ) tiếp xúc với hoành, biết: a) (C m ): y = x 3 - mx + m – 1 b) (C m ): y = 2x 3 – 3(m + 3)x 2 + 18mx – 8 c) (C m ): y = 2x 3 + 3mx 2 - 2m + 1 Bài 2: Cho (C m ): y = 2x 3 – 3(m + 2)x 2 + 6(m + 1)x – 3m + 6 Tìm m để (C m ) cắt trục hoành tại 3 điểm khác nhau Bài 3: Cho (C m ): 3 3 2 2 x m y mx (m 1)x 3 3 = − + − − Tìm m để (C m ) cắt trục hoành tại 3 điểm có hoành độ đều dương Bài 4: Tìm m để phương trình sau có 3 nghiệm phân biệt: 4x 3 - 3x + m = 0 ĐS: -1< m < 1 3 VẤN ĐỀ 4 BÀI TOÁN TÌM THAM SỐ (m, a,…) ĐỂ PHƯƠNG TRÌNH F(x,m) CÓ N NGHIỆM A. PHƯƠNG PHÁP: Biến đổi PT thành dạng f(x) = g(m) (1) khi đó dùng một trong hai cách sau đây: • Số nghiệm của phương trình là số điểm chung của đồ thị hàm (C): f(x) với đường thẳng (d): y = g(m) ( Chỉ cần lập BBT của f(x) ) Đặc biệt: PT (1) có nghiệm khi và chỉ khi m thuộc miền giá trị của hàm số f(x). B. BÀI TẬP ÁP DỤNG Bài 1: Biện luận theo m số nghiệm của phương trình: x + m = m 1x 2 + Bài 2: Tìm m để các phương trình sau có nghiệm: 1) m)x6)(x3(x6x3 =−+−−++ 2) x + 3 = m 2 1x + 3) m1xx1xx 22 =+−−++ 4) 6mx4xmx4x 4 44 =+++++ 5) m( 22422 x1x1x12)2x1x1 −−++−=+−−+ (ĐH KB – 2004) 6) 3 4 2 1x21xm1x −=++− (ĐH KA – 2007) 7) x 3 + 3x 2 - 2 3 2 x +3x + m -1 = 0 8) 2 2 4 4 log (16 8)x x x x m+ − = − + − Bài 3: CMR với ∀ m > 0: PT sau có 2 nghiệm thực phân biệt: x 2 + 2x - 8 = .( 2)m x − (ĐH K B – 2007) Bài 4: Tìm m để phương trình sau có 2 nghiệm thực phân biệt: 1x22mxx 2 +=++ (ĐH K B – 2006) VẤN ĐỀ 5 PHƯƠNG TRÌNH TIẾP TUYẾN CỦA ĐỒ THỊ A. PHƯƠNG PHÁP 4 Cho (C): y = f(x) có đạo hàm trên D. Viết phương trình tiếp tuyến của (C) thoả mãn một số điều kiện cho sẵn: 1. Tiếp tuyến của (C) tại điểm M 0 (x 0 ,y 0 ) thuộc (C) có phương trình là: y – y 0 = f’(x 0 ).(x – x 0 ) (k = f’(x 0 ): là hệ số góc) ♦ Các dạng khác nhau của đề bài: • Cho x 0 : Tính y 0 = f(x 0 ) và f ’ (x 0 ) • Cho y 0 : Giải phương trình y 0 = f(x 0 ) để có x 0 rồi tính f ’ (x 0 ) • Cho hệ số góc k của tiếp tuyến: Giải phương trình f ’ (x 0 ) = k để có x 0 rồi tính y 0 = f(x 0 ) 2. Tiếp tuyến của (C) đi qua (kẻ từ) điểm M(x 1 ,y 1 ) bất kỳ ( M(x 1 ,y 1 ) có thể thuộc hay không thuộc (C) ) ♦ Cách 1: • Viết phương trình đường thẳng (d) đi qua điểm M(x 1 ,y 1 ) và có hệ số góc k y – y 1 = k(x – x 1 ) ⇔ y = k(x – x 1 ) + y 1 (1) • (d) tiếp xúc với (C) tại điểm có hoành độ x 0 ⇔ x 0 và k là nghiệm của hệ phương trình: f(x) k(x x ) y 1 1 ' f (x) k = − + = (I) ⇒ k rồi thay vào (1). ♦ Cách 2: (Tìm hoành độ tiếp điểm x 0 ) • Phương trình tiếp tuyến của (C) tại điểm (x 0 ,y 0 ) là: y – f(x 0 ) = f’(x 0 ).(x – x 0 ) (1) • Vì tiếp tuyến trên đi qua M(x 1 ,y 1 ) nên x 1 và y 1 nghiệm đúng (1): y 1 – f(x 0 ) = f’(x 0 ).(x 1 – x 0 ) (2) • Giải (2) ta có x 0 rồi thế x 0 vào (1) ta được phương trình tiếp tuyến cần tìm. 3. Chú ý bài toán tìm tham số để từ M(x 1 ; y 1 ) kẻ được n tiếp tuyến Phương pháp thông thường là bắt hệ (I) f(x) k(x x ) y 1 1 ' f (x) k = − + = có n nghiệm ⇔ f(x) = f ’ (x)(x – x 1 ) + y 1 có n nghiệm 4. Chú ý các tính chất của hàm hữu tỉ y = 2 ax + bx + c ' ' a x + b (H) Cho M ∈ (H), I là giao của hai tiệm cận của (H): • Nếu tiếp tuyến tại M cắt hai tiệm cận tại A và B thì: + M là trung điểm của AB + Tam giác AIB có diện tích không đổi • Tích khoảng cách từ M đến hai tiệm cận là 1 hằng số 5 B. BÀI TẬP ÁP DỤNG Bài 1: Cho hàm số y = f(x) = x 3 (C) Viết phương trình tiếp tuyến (T) của (C) trong các trường hợp sau: 1) Tại điểm A(-2; 8), B(2; 8) 2) Biết hoành độ tiếp điểm bằng -2 3) Biết tung độ tiếp điểm bằng 27 4) Biết (T) vuông góc với đường thẳng (d): y = - 1 3 x + 3 5) Biết (T) song song với đường thẳng (d): y = 9x - 2 6) Biết (T) đi qua (kẻ từ) điểm P(0, 1). Bài 2: Cho hàm số y = -2x 3 + 6x 2 – 5 (C) Viết phương trình tiếp tuyến của (C) kẻ từ (đi qua) A(-1; -13) (ĐH DB KB 2007) Bài 3: Cho hàm số y = 2 x 3x 3 x 2 + + + (H). Viết phương trình tiếp tuyến với (H) biết tiếp tuyến này vuông góc với đường thẳng (d): 3y – x + 6 = 0 Bài 4: Cho hàm số 2 x 2x 2 y x 1 + + = + (C), gọi I là giao điểm của hai tiệm cận của (C). Chứng minh rằng không có tiếp tuyến nào của (C) đi qua điểm I. Bài 5: Cho (C m ): y = (m 1)x m x m − + − Tìm m để tiếp tuyến với (C m ) tại điểm trên (C m ) có hoành độ x 0 = 4 thì song song với đường phân giác thứ hai của góc hệ trục tọa độ. Bài 6: Cho hàm số y = 2x + 2 x 1− (H) Gọi M là một điểm thuộc đồ thị. I là giao 2 tiệm cận của (H) 1) Khảo sát và vẽ đồ thị (H) 2) Chứng minh rằng: a) Nếu tiếp tuyến tại M cắt 2 tiệm cận tại A và B thì M là trung điểm của AB và tam giác AIB có diện tích không đổi, khi M thay đổi. b) Tích khoảng cách từ M đến hai tiện cận là một hằng số. c) Tìm những điểm trên (H) có tọa độ nguyên. Bài 7: Cho hàm số y = 2 x 3x 3 x 2 − + − (H) Gọi M là một điểm thuộc đồ thị. I là giao 2 tiệm cận của (H). Nếu tiếp tuyến tại M cắt 2 tiệm cận tại P và Q. Chứng minh rằng: 1) M là trung điểm của PQ 6 2) Tam giác AIB có diện tích không đổi 3) IQ.IP không đổi. CHỦ ĐIỂM 2 PHƯƠNG PHÁP TÍNH TÍCH PHÂN VẤN ĐỀ 1 ÁP DỤNG BẢNG NGUYÊN HÀM CƠ BẢN VÀ CÁC TÍNH CHẤT A. PHƯƠNG PHÁP: • Dùng công thức tách, công thức vi phân… để cách biến đổi các hàm dưới dấu tích phân sao cho có thể sử dụng trực tiếp bảng các nguyên hàm cơ bản. B. BÀI TẬP TỰ LUYỆN: Bài 1: Tính các tích phân sau: 1) x e x e 1 dx 2 x − + ∫ ÷ 2) x x 1 2 .3 dx + ∫ 3) 2 dx x.ln x ∫ 4) x 2x e dx e 1 ∫ − Bài 2: Tính các tích phân sau: 1) 2 x x sin cos dx 2 2 − ∫ ÷ 2) 2 x sin dx 2 ∫ 3) 2 2 cos2x dx cos x.sin x ∫ 4) cos2x dx sin x cosx ∫ + 5) 2 cotg x dx ∫ 6) 3 t g x dx ∫ 7) 2 sin x dx ∫ 8) 3 cos x dx ∫ 9) 4 sin x dx ∫ 10) 5 tg x dx ∫ 11) 4 3 5 dx sin x cos x ∫ 12) ln(ex) dx 1 x ln x ∫ + 13) I = π 2 4 π 4 dx sin x ∫ 14) π 4 4 0 dx cos x ∫ 15) π 3 3 2 3 π 3 sin x sin x cotgx dx sin x − ∫ 16) dx π cosx.cos(x ) 4 + ∫ 17) π 3 π 6 dx π sin x.sin(x ) 6 + ∫ 18) 2009 ln x dx x ∫ 7 ĐS (TPXĐ): 13. ( 4 3 ) 14. ( 4 3 ) 15. ( 3 1 8 3 − ) 17. 3 (2.ln ) 2 Bài 3: Tính các tích phân sau: 1) 2 3 1 x dx x − ∫ ÷ 2) 4 2 2 x 2x x 2 dx x x 1 + + + ∫ + + 3) 3 5 dx x x ∫ + 4) dx 3 x x ∫ − 5) 3 8 x dx x 2 ∫ − 6) 3 (3x 1) dx (x 1) + ∫ + 7) dx x 2 x 1 ∫ − − + 8) 2 2x dx x x 1 ∫ + − 9) 2 5 (4x 4x 1) dx− + ∫ 10) (2x 3) 2x 1 dx+ + ∫ 11) dx 3 2x ∫ − 12) 3x 1 dx 2x 3 + ∫ − 13) 2 2x 7x 7 dx x 2 − + ∫ − 14) 2 4x 7 dx 2x 7x 7 − ∫ − + 15) 2 x 2 dx x 3x 2 − ∫ − + VẤN ĐỀ 2 PHƯƠNG PHÁP ĐỔI BIẾN A. PHƯƠNG PHÁP Tính I = f (x)dx ∫ , ta có hai trường hợp sau: • TH1: I = ' f (x)dx g[φ(x)].φ (x).dx= ∫ ∫ Thì ta đặt: t = φ(x) ⇒ dt = ' φ (x).dx ⇒ I = g(t)dt ∫ Tích phân này dễ dàng tính được. (Tức nếu ta thấy trong biểu thức f(x) có thừa số này là đạo hàm của thừa số kia thì ta đặt t = thừa số này) • TH2: Theo các mẫu đã học ở SGK hay do đề bài hướng dẫn ta có thể đặt x = φ(t) ⇒ dx = ' φ (t).dt ⇒ I = ' f[φ(t)].φ (t).dt g(t)dt= ∫ ∫ Tích phân này dễ dàng tính được Các mẫu cần nhớ: Nếu tích phân có chứa: 1) 2 2 α u+ hay 2 2 1 α u+ , ( a > 0, Δ < 0): Đặt u = α tgt với π 2 − < t < π 2 2) 2 2 α u− ( a < 0, Δ < 0): Đặt u = α sint với π 2 − ≤ t ≤ π 2 8 3) 2 2 uα− ( a > 0, Δ > 0): Đặt u = α cost với t∈(0,π)\{ π 2 } VD: ∗ I = 2 2 dx x 1 x ∫ − thì ta đặt x = sint với π π t 2 2 − < < ∗ I = 1 2 0 dx 1 x+ ∫ thì ta đặt x = tgt với π π t 2 2 − < < ⇒ I = π 4 … Chú ý: Tính tích phân xác định thì ta chỉ đổi thêm cận và thay cận là xong 9 TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn Công Hoan - ĐN §TLH: 0905.652.581-0905.620.855 B. BÀI TẬP TỰ LUYỆN: Tính các tích phân sau: 1) I = 3 2 (2x 3). x 3x 5 dx− − + ∫ 2) J = dx xln x ∫ 3) T = 1 2 0 dx 1 x+ ∫ 4) K = 2 4 x 1 dx x 1 − + ∫ 5) L = 3 6 4 2 x x dx x 4x 4x 1 − + + + ∫ 6) T = 2 dx x x 1+ + ∫ 7) X 1 dx 1 8+ ∫ 8) 4 1 X 1 x dx 1 2 − + ∫ (câu 7; 8: Đặt t = -x ; câu 7, ĐS: 1/5) HD: 3) Đặt x = tant ⇒ t = ln( 2 + 1) 4) Giả sử x ≠ 0, chia tử và mẫu cho x 2 Sau đó đặt u = x + 1 x ⇒ ĐS: K = 2 2 1 x 2x 1 ln | | C 2 2 x 2x 1 − + + + + 5) Giả sử x ≠ 0, chia tử và mẫu cho x 3 , Sau đó đặt u = x + 1 x ⇒ ĐS: K = 4 2 4 2 1 x 2x 1 ln C 2 x 2x 1 + + + + + VẤN ĐỀ 3 PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN A. PHƯƠNG PHÁP: Dùng phương pháp này để tính I = f (x)dx ∫ khi: • f(x) có chứa hàm lôgarit mà không có dấu hiệu để đặt ẩn phụ • f(x) là tích của hai loại hàm khác nhau Khi đó ta chọn: ' uφ(x) du φ (x)dx dv v dv = ⇒ = ⇒ = ∫ ⇒ I = udv uv vdu b b b u.dv uv v.du a a a = − ∫ ∫ = − ∫ ∫ (Trong đó: u.dv = f(x).dx) Chọn u, dv thích hợpthì vdu ∫ có dạng đơn giản. Chú ý: Nếu f (x)dx ∫ = ( ) ( ) P x .g x dx ∫ (Tích hai loại hàm khác nhau) ∗ Mà: P(x) là đa thức, còn g(x) là hàm thuận như: sinu, cosu,e u thì ta đặt u = P(x) , dv = g(x).dx = (sinu / cosu / e u )dx ∗ Mà: P(x) là đa thức, còn g(x) là hàm ngược như: u a log , lnu Tài liệu ôn thiđạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý 10 [...]... cấp đối với sin và cos Với lí do: về dạng này SGK chỉ trình bày cho chúng ta phương trình đẳng cấp bậc hai mà trong các kì thi ta vẫn thấy xuất hiện những phương trình đẳng cấp bậc ba hay cao hơn Minh chứng là đềthi ĐH khối B – 2008 (đẳng cấp bậc ba): “Giải phương trình : Trước hết ta nhớ lại khái niệm biểu thức f(x.y) gọi là đẳng cấp bậc k nếu Từ đây ta có thể định nghĩa được phương trình đẳng cấp. .. Vấn đề 2: HƯỚNG GIẢI MỘT PTLG NHƯ THẾ NÀO (HS Tự đọc kỹ) Trong các kí thi chúng ta thường gặp các phương trình lượng giác và chúng đã gây không ít khó khăn đối với nhiều em họchọc sinh, có lẽ lí do mà các em học sinh thường lo sợ khi giải các phương trình lượng giác là có nhiều công thức biến đổi lượng giác nên không biết sử dụng công thức nào để biến đổi phương trình đã cho 30 Tài liệu ôn thiđại học. .. + bsinxcosx + c = 0 π t2 −1 Đặt t = sinx – cosx = 2sin(x − ) ⇒ sinx.cosx = : cách giải tương tự 4 2 27 Tài liệu ôn thiđạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn Công Hoan - ĐN §TLH: 0905.652.581-0905.620.855 B CÁC VẤN ĐỀ ÔN LUYỆN Vấn đề 1: CÁC DẠNG PTLG THƯỜNG GẶP: PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Bài 1: Giải các phương trình sau: π π 1) cos(x + ) +... là tích của hai hàm số lượng giác nên ta nghĩ đến công thức biến đổi tích thành tổng khi đó Phương trình: Ví dụ 6 : Giải phương trình Cũng tương tự như trên vì hai vế của phương trình là tổng của các hàm số lượng giác, hơn nữa ta nhận thấy mỗi vế của phương trình đều chứa ba cung x, 2x, 3x 33 Tài liệu ôn thiđạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn... khai triển 19 Tài liệu ôn thi đạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn Công Hoan - ĐN §TLH: 0905.652.581-0905.620.855 A PHƯƠNG PHÁP Bài toán 1: Ta thực hiện các bước sau đây: n k n −k k b • Viết nhị thức Niutơn dưới dạng tông quát (a + b) = ∑ Cn a (1) k =0 • Tính tổng số mũ của ẩn • Cho số mũ của ẩn ở (1) bằng số mũ của ẩn đề cho ⇒ k ⇒ Hệ số cần tìm... 2004) x Bài 2: Tìm hệ số chứa x12 trong khai triển (x2 + 1)n Biết tổng các hệ số của khai triển trên bằng 1024 Bài 3: Tìm hệ số của x25y10 trong khai triển (x3 + xy)15 Bài 4: Biết tổng các hệ số trong khai triển (1 + 2x)n bằng 59049 Tìm hệ số của x4 Bài 5: Tìm các hạng tử là số nguyên trong khai triển 4 20 Tài liệu ôn thi đạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI... dx 2 1 ∗ 3ln3- ln2+ , dv = , ĐS: + ln( 2 + 1) 6 ) Đặt u = 3 6 cos x cos 2 x 2 2 VẤN ĐỀ 4 TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ 11 Tài liệu ôn thi đạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn Công Hoan - ĐN §TLH: 0905.652.581-0905.620.855 A PHƯƠNG PHÁP: Bài giảng B BÀI TẬP TỰ LUYỆN: Tính các tích phân sau: 4x + 3 dx 2x + 3 dx dx 1) I = ∫ 2) I = ∫ 2 3) I = ∫ 3... 7) -ln18 8) 9) 3ln4 3(x − 2) 9 x +1 4 π 9 10) 11) – 8 + ln9 12) 1 + 25ln2 – 16ln3 3 2 VẤN ĐỀ 5 TÍCH PHÂN HÀM VÔ TỈ A PHƯƠNG PHÁP: Bài giảng 12 Tài liệu ôn thi đạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI §TLH: 0905.652.581-0905.620.855 245/40 Nguyễn Công Hoan - ĐN B BÀI TẬP TỰ LUYỆN: Tính các tích phân sau đây: Bài 1: dx 2 3 ∫ 1) ∫ (2x + 3) dx 2) 3) ∫ (x + 2) 2x + 3... sau đó chọn x thích hợp, với a cho trước Nhận dạng: o Mỗi số hạng có dạng: Ck a k b n −k thì chọn khai triển (a + x)n n sau đó chọn x = b phù hợp o Đặc biệt nếu mỗi số hạng có dạng Ck a k thì ta chọn khai triển n n (x + 1) sau đó chọn x = a • Cách 3: Dùng đạo hàm cấp 1, cấp 2, … B1: Chọn nhị thức Niutơn để khai triển B2: Lấy đạo hàm cấp 1, cấp hai của hai vế B3: Chọn a, b, x, n thích hợp Nhận dạng cách... liệu ôn thi đạihọccấptốc môn Toán Biên soạn: Ths Trương Nhật Lý TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn Công Hoan - ĐN §TLH: 0905.652.581-0905.620.855 B2: Lấy tích phân (xác định) hai vế với cận thích hợp B3: Tính tích phân hai vế ta được kết quả Nhận dạng cách giải và chọn nhị thức khai triển: o Nếu một vế của khai triển có chứa C0 và Cn (C đầu và cuối) đồng thời n n mẫu số trong mỗi tổ hợp tăng . u = 1 cosx , dv = 2 dx cos x , ĐS: 2 1 ln( 2 1) 2 2 + + VẤN ĐỀ 4 TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ Tài liệu ôn thi đại học cấp tốc môn Toán Biên soạn: Ths Trương Nhật Lý 11 TT BDVH & LTĐH. 9 4 10) π 3 11) – 8 + 9 2 ln9 12) 1 + 25ln2 – 16ln3 VẤN ĐỀ 5 TÍCH PHÂN HÀM VÔ TỈ A. PHƯƠNG PHÁP: Bài giảng Tài liệu ôn thi đại học cấp tốc môn Toán Biên soạn: Ths Trương Nhật Lý 12 TT BDVH &. e u )dx ∗ Mà: P(x) là đa thức, còn g(x) là hàm ngược như: u a log , lnu Tài liệu ôn thi đại học cấp tốc môn Toán Biên soạn: Ths Trương Nhật Lý 10 TT BDVH & LTĐH NHÂN TÀI 245/40 Nguyễn