1. Trang chủ
  2. » Tất cả

Đề ôn tập môn toán thpt (146)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 118,46 KB

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hai đường thẳng d và d′ cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d′? A Có hai B K[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Khơng có C Có vơ số D Có [ = 60◦ , S O Câu [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 19 17 Câu Bát diện thuộc loại A {3; 4} B {4; 3} C {3; 3} D {5; 3} Câu Khối đa diện loại {4; 3} có số mặt A B 12 C 10 D √ Câu Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ √ a a3 a3 A B a C D 12 + + ··· + n Câu [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = Câu Cho hai hàm y = f (x), y = g(x) Z có đạo hàmZtrên R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R tan x + m Câu [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x +  π 0; A [0; +∞) B (−∞; −1) ∪ (1; +∞) C (1; +∞) D (−∞; 0] ∪ (1; +∞) Câu Biểu thức sau khơng có nghĩa A (−1)−1 B 0−1 x+1 Câu 10 Tính lim x→−∞ 6x − A B C √ −1 −3 √ D (− 2)0 1 D √ √ Câu 11 Phần thực√và phần ảo số phức √ z = − − 3i √l √ B Phần thực −√1, phần ảo √ A Phần thực √2 − 1, phần ảo −√ C Phần thực 2, phần ảo − D Phần thực − 2, phần ảo − C Trang 1/4 Mã đề Câu 12 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 13 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m ≤ D m > Câu 15 Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối lập phương C Khối 12 mặt D Khối tứ diện Câu 16 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ Thể tích khối chóp S 3.ABC √ √ a a a3 a3 A B C D 12 12 Câu 17 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B C D A a 6 Câu 18 Cho hình√ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối √ chóp S ABCD √ 3 √ a a a3 15 B C a A D 3 Câu 19 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C Vô số D 62 Câu 21 [1215d] Cho hàm số f (x) Hàm số y = f (x) có đồ thị hình bên Hàm số g(x) = f (1 − 2x) + x2 − x nghịch biến khoảng ! ! A 1; B 0; 2 C (−2; −1) D (2; 3) Câu 22 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 0 Câu 23 [3-1122h] Cho hình lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ Trang 2/4 Mã đề √ √ √ √ a3 a3 a3 a3 A B C D 36 12 24 Câu 24 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích√khối chóp S ABCD √ √ a3 a3 2a3 3 A B C a D Câu 25 Khối đa diện loại {4; 3} có tên gọi gì? A Khối 12 mặt B Khối bát diện C Khối tứ diện D Khối lập phương Câu 26 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu 27 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) − n2 bằng? Câu 28 [1] Tính lim 2n + 1 A B C Cả ba mệnh đề C D (I) (II) D − Câu 29 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 3 A a B C D Câu 30 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 31 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 32 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D 3|x−1| = 3m − có nghiệm D Trang 3/4 Mã đề Câu 33 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A 2; B ;3 C [3; 4) D (1; 2) 2 √ ab Câu 34 [2D1-3] Cho hàm số f (x) = ax4 +bx3 +cx2 +dx+e a, b, c, d, e ∈ R Biết x2 hàm số y = f (x) có đồ thị hình vẽ bên Hàm số g(x) = f (1− x)− +2x nghịch biến khoảng sau đây? A (−1; 1) B (2; 3) C (3; +∞) D (−2; 0) −2 −1 a Câu 35 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D 2−n Câu 36 Giá trị giới hạn lim n+1 A −1 B C D Câu 37 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ √ C đến đường thẳng BB 2, khoảng 0 cách từ A đến đường thẳng BB CC √ 3, hình chiếu vng góc A lên mặt Thể tích khối lăng trụ cho phẳng (A0 B0C ) trung điểm M B0C A0 M = √ √ D A B C Câu 38 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 39 [3] Biết giá trị lớn hàm số y = số tự nhiên Tính S = m2 + 2n3 A S = 135 B S = 24 ln2 x m đoạn [1; e3 ] M = n , n, m x e C S = 22 D S = 32 2 Câu 40 [3-c] số f (x) = 2sin x + 2cos x √ √ Giá trị nhỏ giá trị lớn hàm √ A 2 B C 2 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A A D C C C C 10 A B 11 A 12 A 13 D 15 17 19 14 C B 16 A 18 A C 20 B 21 A D 22 C 23 C 24 A 25 D 26 A 27 D 28 D 29 C 30 B 31 C 32 B 34 B 33 35 B D 36 A 37 A 39 38 A D 40 C ... lớn hàm √ A 2 B C 2 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A A D C C C C 10 A B 11 A 12 A 13 D 15 17 19 14 C B 16 A 18 A C 20... 3m − có nghiệm D Trang 3/4 Mã đề Câu 33 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A 2; B ;3 C [3; 4)... nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) − n2

Ngày đăng: 11/03/2023, 09:24

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w