Tìm điểm cố định đó.. Tìm số chính phương có 4 chữ số, biết rằng khi giảm mỗi chữ số một đơn vị thì số mới được tạo thành cũng là một số chính phương có 4 chữ số... Bài 5: Chia mỗi cạnh
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN LÊ KHIẾT
ĐỀ CHÍNH THỨC Môn thi: Toán Ngày thi: 27-6-2013
Thời gian làm bài: 120 phút Bài 1: (1,5 điểm)
x
2 Chứng minh khi giá trị của m thay đổi thì các đường thẳng (m−1)x + (2m+1)y = 4m + 5 luôn
đi qua một điểm cố định Tìm điểm cố định đó.
Bài 2: (1,5 điểm)
1 Tìm số chính phương có 4 chữ số, biết rằng khi giảm mỗi chữ số một đơn vị thì số mới
được tạo thành cũng là một số chính phương có 4 chữ số.
2 Tìm nghiệm nguyên của phương trình x2 xy y 2 3x y 1
Bài 3: (2,5 điểm)
1 Tìm các giá trị của m để phương trình x2 m 2x m 1 0 có 2 nghiệm x1,x2 thỏa mãn hệ
thức
1 2
10
x x
2 Giải hệ phương trình
3 Giải phương trình 2 3
3 x 6 8 x 1 3
Bài 4: (3,5 điểm)
Cho tam giác ABC có 3 góc nhọn(AB<AC) nội tiếp(O;R) Tiếp tuyến tại A của(O) cắt đường thẳng BC tại M Kẻ đường cao AH của tam giác ABC.
1 Chứng minh rằng BC=2R.sinBAC
2 Điểm N chuyển động trên BC ( N khác B và C) Gọi E, F lần lượt là hình chiếu của N lên
AB, ẠC Xác định vị trí của N để độ dài EF ngắn nhất.
3 Đặt BC = a, AC = b, AB = c Tính MA theo a, b, c.
4 Các tiếp tuyến tại B và C của(O) cắt đường thẳng MA lần lượt tại P và Q Chứng minh rằng
HA là tia phân giác của góc PHQ
Bài 5:(1 điểm)
Trong tam giác đều có cạnh bằng 8 đặt 193 điểm phân biệt Chứng minh tồn tại 2 điểm trong
193 điểm đã cho có khoảng cách không vượt quá 3
3
Trang 2-HẾT -ĐỀ+BÀI GIẢI MÔN TOÁN THI VÀO 10 THPT TỈNH QUẢNG NGÃI NĂM HỌC 2013-2014
Bài 1:
2
Vì x ≥ 0
2)
M(x
0
,y
0
) là điểm cố định nếu có mà đường thẳng đi qua:
(m−1)x0 + (2m+1)y0 = 4m + 5 => ( x0 + 2y0 - 4) )m = x0 - y0 - 5 Xảy ra với mọi m.
0 0
0
16
3
x
y
Vậy đường thẳng đã cho luôn đi qua điểm cố định có tọa độ là
16 1
;
3 3
Bài 2:
; x N* và 1000 < x2 < 9999 => 31 < x < 100
2) Tìm nghiệm nguyên của phương trình x2 xy y 2 3x y 1
x xy y x y x xy y x y x y x y (*)
Vậy các nghiệm nguyên của phương trình là: (1;-1),(3;-1),(1;1)
Bài 3:
1 Tìm các giá trị của m để phương trình x2 m 2x m 1 0 có 2 nghiệm x1,x2 thỏa mãn hệ
thức
1 2
10
x x
Trang 3
2
2
2
2 2
2
2
1
m
(1),(2)suy ra m = 1/91 hoặc m = 9.
2 Giải hệ phương trình
x 1 x y 1 y 2 y 2 x x x y y 3 x 3 y 0 x y x xy y 3 0
Vì x≥0;y≥0 nên x = y
Thay vào một trong hai phương trình tìm được hai nghiệm cuay hệ là (0;0),(1;1)
3 Giải phương trình 2 3
3 x 6 8 x 1 3
3x 18 8 x 1 24 3x 6 8 x 1 Bình phương hai vế ta có :
Phương trình vô nghiệm
Bài 4:
1) BC=2R.sinBAC
Tia Bo cắt (O) tại G =>
BGC BAC
BAC.
2
AN
O E
Gọi I là trung điểm của EF
'
2
EO F
2
x x
2
' 16 10 6
I
O'
F E
G
H
A
Trang 4ĐỀ+BÀI GIẢI MÔN TOÁN THI VÀO 10 THPT TỈNH QUẢNG NGÃI NĂM HỌC 2013-2014
2
AN
Mà BAC không đổi nên EF nhỏ nhất khi AN nhỏ nhất => N trùng H
3)Tính MA theo a, b, c.
2
2 2 2 2
1 2 ( )
1 2
MB AH
MB
2
2ac 2 2ab 2 2abc2 MA 2abc2
Ta có
( ) ,(PA=PB,QA=QC) PJ//AH//QK
( )
PHJ QHK PHA QHA
Hay HA là tia phân giác của góc PHQ
Bài 5:
Chia mỗi cạnh của tam giác thành 8 đoạn thẳng bằng nhau Nối các điểm chia đó bằng các đoạn thẳng song song với các cạnh của tam giác (hình vẽ) Ta được các tam giác đều có cạnh bằng 1
9 7 5 3 1
K J
Q
P
H
A
B
C
Trang 5Đặt ngẫu nhiên 193 điểm vào 64 tam giác này
(193 :64=3 dư 1)
Theo nguyên lí dirichlet thì sẽ có ít nhất 1 tam giác đều có ít nhất 4 điểm
Xét tam giác đều này,Gọi G là trọng tâm của tam giác, Từ G vẽ các đoạn thẳng vuông góc đến các
cạnh, tạo thành 3 tứ giác bằng nhau(hình 2)
Đặt ngẫu nhiên 4 điểm vào tam giác này theo nguyên lí dirichlet sẽ có một
tứ giác chứa ít nhất 2 điểm Mà tứ giác này nội tiếp trong đường tròn đường kính
GA nên khoảng cách của chúng d≤ GA
O
G
H
I K
C
A
B