1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (331)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,38 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 5 B 0 C[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D 1−n Câu [1] Tính lim bằng? 2n + 1 A − B 2n + Câu Tìm giới hạn lim n+1 A B C C D D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b √ √ 4n2 + − n + Câu Tính lim 2n − A B x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) C +∞ D C D +∞ Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B − sin 2x C −1 + sin 2x 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B C 2−n Câu Giá trị giới hạn lim n+1 A B C −1 D −1 + sin x cos x D −1 D Câu 10 Phát biểu sau sai? = n C lim un = c (un = c số) D lim k = n Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (1; 3; 2) D (2; 4; 6) log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x 0 A y0 = B y = C y = D y = x3 2x3 ln 10 2x3 ln 10 x3 ln 10 Câu 13 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D A lim qn = (|q| > 1) B lim Trang 1/5 Mã đề Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m ≥ D m < 4 4 √ x+ 1−x2 √ x+ 1−x2 − 4.2 − 3m + = có nghiệm Câu 15 [12215d] Tìm m để phương trình 3 A ≤ m ≤ B < m ≤ C m ≥ D ≤ m ≤ 4 x x x Câu 16 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C D Vô nghiệm √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 64 C 63 D 62 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 11 − 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ log(mx) = có nghiệm thực Câu 20 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) Câu 23 Tính lim = với k > nk D lim √ = n B lim 2n2 − 3n6 + n4 Câu 24 Trong khẳng định có khẳng định đúng? A B C D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 7n2 − 2n3 + Câu 25 Tính lim 3n + 2n2 + A - B C D D + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = C Trang 2/5 Mã đề cos n + sin n n2 + B Câu 28 Tính lim n+3 A B Câu 27 Tính lim A C −∞ D +∞ C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 Câu 30 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 3a a 38 B C D A 29 29 29 29 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab B D √ A √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C 2a D A a [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 2a C D 3a 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C D a Trang 3/5 Mã đề Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C a D 2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D 0dx = C, C số B xα+1 + C, C số α+1 Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) D dx = log |u(x)| + C u(x) Câu 44 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) Z Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D k f (x)dx = k f (x)dx, k số A f (t)dt = F(t) + C B Z Câu 45 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 46 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 48 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) Câu 50 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K C Cả ba mệnh đề D (I) (II) B f (x) có giá trị nhỏ K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A A C C 11 C 10 A 12 14 C 15 A D B 16 A 17 D 19 A 18 C 20 C 21 B 22 A 23 B 24 25 A 26 A 27 A 28 A 29 31 B D 13 D C 30 B C 32 A C 33 C 34 B 35 D 36 C 37 D 38 C 39 A 40 A 41 42 C 43 D 44 45 B 46 A 47 B 48 49 D D 50 C B D ... mệnh đề D (I) (II) B f (x) có giá trị nhỏ K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A A C C 11 C 10 A 12 14... x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 48 Z [123 3d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx,... trình 3 A ≤ m ≤ B < m ≤ C m ≥ D ≤ m ≤ 4 x x x Câu 16 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20 A B C D Vô nghiệm √ Câu 17 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m =

Ngày đăng: 10/03/2023, 23:32