Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 5 B 0 C −1 D[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B C −1 x+1 x→+∞ 4x + B D Câu Tính lim A D C D C D C −∞ D C D C D +∞ C Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B 2n + Câu Tính giới hạn lim 3n + 2 A B 3 x −1 Câu Tính lim x→1 x − A +∞ B = nk D lim qn = (|q| > 1) B lim Câu Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin x cos x C −1 + sin 2x x+2 Câu 10 Tính lim bằng? x→2 x A B C D − sin 2x D Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 √ √ √ ab Câu 13 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B ≤ m ≤ C < m ≤ D m ≥ 4 Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D 2 Trang 1/5 Mã đề √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C Vô số D 63 Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 + 19 11 − 19 B Pmin = C Pmin = D Pmin = A Pmin = 21 Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 2020 C log2 2020 D 13 Câu 21 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un = C Nếu lim un = a , lim = ±∞ lim !vn un D Nếu lim un = a > lim = lim = +∞ un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = 2 2 + + ··· + n Câu 24 [3-1133d] Tính lim n3 A B +∞ C D 3 ! 3n + Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D Câu 26 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B u = n 5n − 3n2 (n + 1)2 cos n + sin n Câu 27 Tính lim n2 + A B +∞ C un = C 1 − 2n 5n + n2 D un = n2 − 3n n2 D −∞ Trang 2/5 Mã đề Câu 28 Tính lim A Câu 29 Tính lim A n−1 n2 + n+3 B C B C ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 D D D +∞ [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ a 57 a 57 2a 57 C A B a 57 D 17 19 19 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S BC) √ với mặt đáy S O = a √ √ a 57 2a 57 a 57 B C a 57 A D 19 19 17 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C D a 3 2 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D 0 0 Câu 38.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a 2 Trang 3/5 Mã đề Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C D A 2a Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g(x)dx f (x) , g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Câu (II) sai D Khơng có câu sai Câu 43 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 45 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) có giá trị lớn K Câu 46 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x B Z D 0dx = C, C số xα+1 x dx = + C, C số α+1 α Câu 47 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x Trang 4/5 Mã đề √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 49 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 50 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D A A D D 11 13 B 15 A 10 C 12 C 14 C 16 A 17 19 18 C B D 22 23 D 24 B 28 29 C 30 31 C 32 33 A D C B C B 34 A 35 36 A C 37 A 39 D B 43 45 C 26 27 A 41 C 20 A 21 25 B A C D D 38 D 40 D 42 D 44 A 46 B 47 C 48 49 C 50 D C B ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D A A D D 11 13 B 15 A 10 C 12 C 14 C 16 A 17 19 18 C B D 22 23 D 24 B 28 29 C 30 31 C... 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 17 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 18 [122 14d] Với giá trị m phương trình |x−2|... giá trị nhỏ Câu 19 [122 10d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 + 19 11 − 19 B Pmin = C Pmin = D Pmin = A Pmin = 21 Câu 20 [122 21d] Tính tổng