Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A 0 B −1 C 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A B −1 C D x −1 Câu Tính lim x→1 x − A −∞ B C D +∞ √ √ 4n2 + − n + Câu Tính lim 2n − 3 C D A +∞ B Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) + g(x)] = a + b x→+∞ f (x) a D lim = x→+∞ g(x) b x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ Câu !Dãy số sau có giới !hạn 0? n n 5 A B − 3 !n C e !n D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x x−2 Câu Tính lim x→+∞ x + A B −3 C 2n − Câu Tính lim 2n + 3n + A B −∞ x+2 Câu Tính lim bằng? x→2 x A B − 2n Câu 10 [1] Tính lim bằng? 3n + 1 A B D − C +∞ D C D C √ D −1 + sin x cos x D − √ Câu 11 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D m ≥ 4 Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D 2 Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey + C xy0 = ey + D xy0 = ey − Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = −ey − 1 Câu 14 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < D m < ∨ m > q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] √ Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 ;3 B [3; 4) C 2; D (1; 2) A 2 Câu 15 [1226d] Tìm tham số thực m để phương trình Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C log2 13 D 13 Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 3) C (1; 3; 2) D (2; 4; 4) log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x 1 − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x ln 10 2x ln 10 x3 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = un Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 cos n + sin n Câu 24 Tính lim n2 + A −∞ B C D +∞ 2n − Câu 25 Tính lim 3n + n4 A B C D Câu 26 Dãy số sau có giới hạn 0? n2 − − 2n n2 − 3n n2 + n + A un = B u = C u = D u = n n n 5n − 3n2 5n + n2 n2 (n + 1)2 Câu 27 Dãy số sau có giới hạn khác 0? sin n A B n n n+1 n D √ n ! 3n + Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D C Trang 2/5 Mã đề Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim = ±∞ lim ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a > lim = lim = +∞ ! 1 Câu 30 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 2a C 4a D 3a Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B a C 2a D A Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C D A B √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a 2a a B C D A 9 9 Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 17 19 19 Trang 3/5 Mã đề Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (I) D Chỉ có (II) Câu 44 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) C Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 46 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Trang 4/5 Mã đề Câu 47 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 48 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 49 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C Z D g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 50 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) xác định K D f (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A A B 11 A D 13 D 10 D 12 D 14 15 A 16 17 A 18 19 A 20 C 21 23 25 B C 29 D C B C 24 B 26 B 28 A D 30 A 31 A 32 33 D 35 37 B 22 D 27 D C C C 34 D 36 D 38 B 39 A 40 41 C C B 42 A C 43 B 44 A 45 B 46 47 C 48 49 C 50 A B D ... nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A A B 11 A D 13 D 10 D 12 D 14 15 A 16 17 A 18 19 A 20 C 21 23 25 B C 29 D C B C 24... số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D C Trang 2/5 Mã đề Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim... 2 Câu 15 [122 6d] Tìm tham số thực m để phương trình Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C log2 13 D 13 Câu 19 [122 7d] Tìm