Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B −1 C 1 D 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + x→+∞ x + B −1 Câu Tính giới hạn lim A Câu Tính lim A +∞ x→3 x2 − x−3 C D B −3 C D B C −∞ D Câu Tính lim A +∞ x→1 x −1 x−1 Câu Cho f (x) = sin x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin 2x C −1 + sin x cos x D + sin 2x − 2n Câu [1] Tính lim bằng? 3n + 2 A B C − D 3 x−2 Câu Tính lim x→+∞ x + A B −3 C − D 4x + bằng? Câu [1] Tính lim x→−∞ x + A −4 B C D −1 x − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B C D √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C D − 4 Câu 10 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x) + g(x)] = a + b B lim = x→+∞ x→+∞ g(x) b C lim [ f (x)g(x)] = ab D lim [ f (x) − g(x)] = a − b x→+∞ √ Câu 11 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 x→+∞ √ x+ 1−x2 − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C ;3 D 2; 2 √ ab Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = −ey + C xy0 = ey + D xy0 = −ey − Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = ey − Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 15 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D log(mx) = có nghiệm thực Câu 16 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m ≤ B m < ∨ m > C m < ∨ m = D m < Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≤ C m ≥ D m < A m > 4 4 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 22 Dãy số sau có giới hạn 0? − 2n n2 − A un = B u = n 5n + n2 5n − 3n2 2n2 − Câu 23 Tính lim 3n + n4 A B 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A +∞ B Câu 25 Tính lim n+3 A B C un = n2 − 3n n2 C D D C D C Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ D un = C n2 + n + (n + 1)2 un D Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B C Câu 28 Dãy số sau có giới hạn khác 0? n+1 B A √ n n Câu 29 Phát biểu sau sai? A lim k = với k > n C lim qn = với |q| > Câu 30 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = C n D D sin n n B lim √ = n D lim un = c (Với un = c số) + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới hạn n → +∞ D lim un = [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 B C D A a 57 19 19 17 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C A √ B D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 17 19 19 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a B A a C D Câu 41 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 42 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai Câu 44 Z Các khẳng định sau Z sai? A Z C D Chỉ có (I) Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (t)dt = F(t) + C Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai C Câu (I) sai D Câu (III) sai Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Cả hai câu sai D Chỉ có (I) Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 49 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Câu 50 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D 10 C 14 A 15 A 16 D 23 D 22 A 24 C D 25 28 29 B 26 27 A C B 30 A C B 32 33 D 34 35 D 36 A 37 D 38 39 C 40 41 C 42 B C D D C B 44 A 45 A 49 C 20 A 21 47 C 18 B 19 A 43 B 12 13 A 31 D A B 17 B C 11 C 46 B 48 D 50 A B C ... (x) có giá trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D 10 C 14 A 15 A 16 D 23 D 22 A 24 C D 25 28 29 B 26 27 A C B 30 A... nhất? A B C D log(mx) = có nghiệm thực Câu 16 [122 6d] Tìm tham số thực m để phương trình log(x + 1) A m ≤ B m < ∨ m > C m < ∨ m = D m < Câu 17 [122 4d] Tìm tham số thực m để phương trình log23... C m ≥ D m < A m > 4 4 Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 Câu 19 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1