1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (279)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,75 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu h[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu Tính lim A +∞ x→3 x2 − x−3 B 2−n Câu Giá trị giới hạn lim n+1 A B C −3 D C −1 D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→+∞ x−2 x+3 A B − x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) C −3 D Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim un = c (un = c số) √ √ 4n2 + − n + Câu Tính lim 2n − A +∞ Câu Tìm giới hạn lim A = nk D lim = n B lim B C D 2n + n+1 B C D Câu Dãy số! có giới hạn 0? !n n −2 A un = B un = n − 4n C un = √ x2 + 3x + Câu 10 Tính giới hạn lim x→−∞ 4x − 1 A B C − 4 log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x A y0 = B y0 = C y0 = 3 x 2x ln 10 2x ln 10 D un = n3 − 3n n+1 D D y0 = − ln 2x x3 ln 10 Trang 1/5 Mã đề Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h q x+ log23 x + 1+4m−1 = có nghiệm thuộc đoạn 1; A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 B Pmin = C Pmin = D Pmin = A Pmin = 9 21 √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số √ x+ 1−x2 √ x+ 1−x2 − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < D m < ∨ m = Câu 16 [12215d] Tìm m để phương trình A m ≥ B ≤ m ≤ − 4.2 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m ≥ D m > 4 4 Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e + B xy = e − C xy0 = −ey − D xy0 = ey + Câu 21 Tính lim A cos n + sin n n2 + B D +∞ ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Mệnh đề sau đúng? Câu 23 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = 2 2n − Câu 24 Tính lim 3n + n4 A B C D Câu 25 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ C −∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ D Nếu lim un = a > lim = lim n−1 Câu 26 Tính lim n +2 A B Câu 27 A Câu 28 A Câu 29 A Câu 30 C D un Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim B C −∞ D Tính lim n+3 B C D 7n − 2n + Tính lim 3n + 2n2 + B C D ! 1 + + ··· + Tính lim 1.2 2.3 n(n + 1) +∞ - 3 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B a C D A 2 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a D a A 2a B a C 0 0 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 A B C D Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD Trang 3/5 Mã đề √ √ √ √ a a A B a C a D Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a 8a a A B C D 9 9 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C 2a D Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C D a A 2a 2 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Cả hai câu sai D Chỉ có (II) Câu 42 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 45 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) xác định K D f (x) liên tục K Câu 47 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Khơng có câu C Câu (I) sai sai Câu 49 Xét hai khẳng đinh sau D Câu (II) sai (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai sai C Chỉ có (I) D Cả hai Câu 50 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D A C A A A C A 10 C C 11 D 12 13 D 14 15 16 C D 17 B C 18 B 19 A 20 B 21 A 22 23 D 24 25 D 26 D C 28 27 A 29 31 C D D 30 B 32 C B 33 C 34 D 35 C 36 C C 37 D 38 39 D 40 B 42 B 41 B 43 A 44 A 45 47 D 46 B 49 A D 48 B 50 B ... C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D A C A A A C A 10 C C 11 D 12 13 D 14 15 16 C D 17 B C 18 B 19 A 20 B 21 A 22 23 D 24... log(mx) Câu 17 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < D m < ∨ m = Câu 16 [122 15d] Tìm m để phương trình A m ≥ B ≤ m ≤ − 4.2 Câu 18 [122 11d] Số... − Câu 24 Tính lim 3n + n4 A B C D Câu 25 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ C −∞ Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un

Ngày đăng: 10/03/2023, 23:27