1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (274)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,76 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 0 B 2 C 1 D +∞[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A B x+1 Câu Tính lim x→+∞ 4x + A B x−2 Câu Tính lim x→+∞ x + B −3 A − 2n + Câu Tìm giới hạn lim n+1 A B 2x + Câu Tính giới hạn lim x→+∞ x + A B −1 − 2n Câu [1] Tính lim bằng? 3n + A − B 3 2n + Câu Tính giới hạn lim 3n + 2 A B x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B − √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B 4 Câu 10 Dãy số có giới hạn 0? !n A un = n − 4n B un = C D +∞ D C D C D C D C D C C D C D +∞ C D n3 − 3n C un = n+1 !n −2 D un = Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [0; 2] Câu 11 [3-12217d] Cho hàm số y = ln Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Trang 1/5 Mã đề log 2x x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 2x ln 10 x ln 10 x3 log(mx) Câu 15 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m > C m < D m < ∨ m = Câu 14 [1229d] Đạo hàm hàm số y = Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 3) D (2; 4; 6) Câu 17 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C (1; 2) D [3; 4) A 2 √ Câu 19 [12215d] Tìm m để phương trình x+ B ≤ m ≤ A ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 Câu 22 Tính lim 2n2 − 3n6 + n4 A B Câu 23 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) Câu 24 Tính lim A n+3 C √ ab 3 D < m ≤ D D +∞ D B lim √ = n n D lim q = với |q| > B C D + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un giới hạn n → +∞ D lim un = ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn 0? n2 − − 2n B u = A un = n 5n + n2 5n − 3n2 C un = n2 − 3n n2 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B +∞ C Câu 29 Trong khẳng định có khẳng định đúng? D un = D n2 + n + (n + 1)2 (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B n−1 Câu 30 Tính lim n +2 A B C C D D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ 2 2 a +b a +b a +b a2 + b2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 C D B 19 17 19 Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B 2a C D A a Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a 2a a A B C D 9 9 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a A B C D 29 29 29 29 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C (I) (III) D Cả ba mệnh đề Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai D Cả hai sai Câu 43 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B [ f (x) − g(x)]dx = f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 45 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Trang 4/5 Mã đề B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) C dx = log |u(x)| + C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) xác định K D f (x) liên tục K Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C Z B f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C D Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu sai C Cả hai câu D Chỉ có (I) Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D 0dx = C, C số xα dx = xα+1 + C, C số α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C A A A A 10 11 A 12 A 13 A 14 D 15 B C D C D 16 18 A 17 A 19 B 20 21 B 22 D D B 24 D 25 A 26 D 27 A 28 A 23 29 D 30 31 D 32 33 B C 34 B D 35 A 36 A 37 A 38 D 40 D 39 C 41 A 42 A 43 D 44 D D 45 C 46 47 C 48 49 C 50 C D ... số α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C A A A A 10 11 A 12 A 13 A 14 D 15 B C D C D 16 18 A 17 A 19 B 20 21 B 22 D D B... 2) D [3; 4) A 2 √ Câu 19 [122 15d] Tìm m để phương trình x+ B ≤ m ≤ A ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ Câu 20 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C (I) (III) D Cả ba mệnh đề Câu

Ngày đăng: 10/03/2023, 23:27