1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (388)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,07 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (3x2 − 2x + 1) A +∞ B 2 C 3 D 1 Câ[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B x−3 Câu [1] Tính lim bằng? x→3 x + A B 2n + Câu Tính giới hạn lim 3n + A B 2n − Câu Tính lim 2n + 3n + A +∞ B −∞ x − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A B − 5 − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 x −1 Câu Tính lim x→1 x − A −∞ B +∞ 2−n Câu Giá trị giới hạn lim n+1 A B −1 C D C −∞ D +∞ C D C D C −∞ D +∞ D C D C D C Câu Phát biểu sau sai? A lim un = c (un = c số) C lim k = n 2n + Câu 10 Tìm giới hạn lim n+1 A B 1 = n D lim qn = (|q| > 1) B lim C D Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] q x+ log23 x + 1+4m−1 = D m ∈ [0; 2] log(mx) = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m < ∨ m > D m ≤ Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 11 + 19 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 16 [1226d] Tìm tham số thực m để phương trình Câu 19 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 C [3; 4) D ;3 A (1; 2) B 2; 2 7n2 − 2n3 + Câu 21 Tính lim 3n + 2n2 + B A Câu 22 Tính lim n+3 A B 2 C - D C D √ ab Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B D ! 3n + 2 + a − 4a = Tổng phần tử Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 25 Dãy số sau có giới hạn khác 0? sin n n+1 A B n n ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C C n C D √ n D Trang 2/5 Mã đề 1 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C 2 ! Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ Câu 29 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n cos n + sin n Câu 30 Tính lim n2 + A +∞ B −∞ C D un D B lim un = c (Với un = c số) D lim √ = n C D d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 3a A 2a B 4a C 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 0 0 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 abc b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 5a 8a B C D A 9 9 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ A C √ D √ 2 2 2 a +b a +b a +b a + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a a 38 3a 38 A B C D 29 29 29 29 Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D (I) (II) Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 48 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) xác định K D f (x) liên tục K Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 50 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Z Z !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C C A B B D D 10 11 D 12 A D 13 C 14 A 15 C 16 B 18 B 17 A 19 21 23 20 D C 22 A 24 A B 25 A 27 C 29 A 31 C 33 A C 37 D 39 D 28 D 30 C 32 C 36 C 38 C 40 A C 42 41 A 43 D B B C 46 C 50 A D 44 48 47 A 49 26 34 A 35 45 D D ... k số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C C A B B D D 10 11 D 12 A D 13 C 14 A 15 C 16 B 18 B 17 A 19 21 23 20 D C 22 A 24... Pmin = D Pmin = 21 9 Câu 16 [122 6d] Tìm tham số thực m để phương trình Câu 19 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 20 [122 20d-2mh202047] Xét số thực... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D

Ngày đăng: 10/03/2023, 23:27