Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A −[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B −1 + sin 2x C + sin 2x x − 12x + 35 25 − 5x D − sin 2x Câu Tính lim x→5 B +∞ A −∞ Câu Tính lim x→3 A x2 − x−3 B −3 2n + Câu Tìm giới hạn lim n+1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B 4 x+2 Câu Tính lim bằng? x→2 x A B x+1 Câu Tính lim x→−∞ 6x − B A √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ Câu Tính lim x→1 A x3 − x−1 B +∞ C − D C +∞ D C D C D C D D C D C −∞ D C Câu 10 Dãy số có giới hạn 0?! n −2 A un = n − 4n B un = !n n3 − 3n C un = D un = n+1 √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C Vô số D 63 log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x ln 10 x 2x ln 10 2x3 ln 10 Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (1; 3; 2) D (2; 4; 3) Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 4] q x+ log23 x + 1+4m−1 = D m ∈ [0; 2] Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 16 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 ;3 C [3; 4) D 2; A (1; 2) B 2 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 Câu 21 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 22 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B un = (n + 1) 5n + n2 C C un = D n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 23 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n = với k > nk D lim qn = với |q| > B lim Câu 24 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Trang 2/5 Mã đề un A −∞ B C +∞ D ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Mệnh đề sau đúng? Câu 27 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = n−1 Câu 28 Tính lim n +2 A B C D Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim Câu 29 Dãy số sau có giới hạn khác 0? sin n n+1 A B n n Câu 30 Tính lim A n+3 B C n C D √ n D Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B a C D 2a A [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S BC) √ √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C a 57 D A 19 17 19 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a C D A a B Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a a 38 3a 58 3a 38 A B C D 29 29 29 29 Trang 3/5 Mã đề Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 2a D 3a Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C D a A 2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (I) D Chỉ có (II) Câu 42 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 43 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) liên tục K D f (x) có giá trị lớn K Câu 45 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Trang 4/5 Mã đề Câu 46 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi D A D A A A 10 B 11 A 13 16 C 20 C B 22 D 24 A 25 D 26 C B B 28 C 27 C 18 A B 23 29 B 14 A B 19 21 C 12 A 15 17 B B D 30 C 32 31 A 33 D 35 D 34 A C 36 37 A C 38 A 39 D 40 A 41 B 42 43 B 44 B 46 B 45 C 47 A 49 D 48 A C 50 C ... - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi D A D A A A 10 B 11 A 13 16 C 20 C B 22 D 24 A 25 D 26 C B B 28 C 27 C 18 A B 23 29 B 14 A B 19 21 C 12 A 15 17 B B D 30 C 32... có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 16 [122 13d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ Câu 17 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa... [3; 4) D 2; A (1; 2) B 2 Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Câu 19 [122 14d] Với giá trị m phương trình