Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (3x2 − 2x + 1) A 3 B 1 C 2 D +∞ Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim (3x2 − 2x + 1) x→1 A B 2n + Câu Tìm giới hạn lim n+1 A B C D +∞ C D Câu Phát biểu sau sai? = n D lim k = n A lim qn = (|q| > 1) B lim C lim un = c (un = c số) Câu Tính lim x→+∞ x−2 x+3 A B −3 √ x2 + 3x + x→−∞ 4x − 1 B − C − D C D !n −2 C un = D un = Câu Tính giới hạn lim A Câu Dãy số có giới hạn 0?! n A un = n − 4n B un = 2x + x→+∞ x + B 1 n3 − 3n n+1 Câu Tính giới hạn lim A Câu Tính lim x→2 A C x+2 bằng? x B C D −1 D Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x)g(x)] = ab x→+∞ B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a C lim = x→+∞ g(x) b D lim [ f (x) − g(x)] = a − b x→+∞ Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) √ Câu 11 [12215d] Tìm m để phương trình x+ A < m ≤ B m ≥ x→a x→b x→a √ x+ 1−x2 x→b D lim− f (x) = f (a) lim− f (x) = f (b) 1−x2 − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 18 11 − 29 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 log(mx) Câu 14 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m < D m ≤ 4 4 Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " ! " nhỏ! biểu thức P = x + 2y thuộc tập đây? 5 B (1; 2) C [3; 4) D ;3 A 2; 2 Câu 18 [12214d] Với giá trị m phương trình A < m ≤ 1 3|x−2| √ ab = m − có nghiệm C < m ≤ D ≤ m ≤ √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 62 D 64 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 2] B ≤ m ≤ Câu 21 Dãy số sau có giới hạn 0? n2 − − 2n A un = B un = 5n − 3n 5n + n2 C un = n2 + n + (n + 1)2 D un = n2 − 3n n2 Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 23 Tính lim A B 1 + + ··· + 1.2 2.3 n(n + 1) B C D ! 12 + 22 + · · · + n2 n3 B C D C D +∞ Câu 24 [3-1133d] Tính lim A Trang 2/5 Mã đề Câu 25 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a , lim = ±∞ lim = ! un C Nếu lim un = a < lim = > với n lim = −∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 26 Dãy số sau có giới hạn khác 0? n+1 B A √ n n Câu 27 Tính lim n+3 A B C sin n n D n C D un Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D −∞ ! 3n + 2 + a − 4a = Tổng phần tử Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 B C D A a 57 17 19 19 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Trang 3/5 Mã đề Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 b a2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 A B C D 29 29 29 29 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C a D 2 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu sai D Cả hai câu Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai sai C Chỉ có (I) D Cả hai Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D Cả ba câu sai Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] Trang 4/5 Mã đề A B C D Câu 45 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 46 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 47 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) + C ⇒ Z B Z f (t)dt = F(t) + C D Z k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 48 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = xα+1 + C, C số α+1 0dx = C, C số Câu 50 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C A A B C A A C 11 10 A D 13 A 12 D 14 D D 15 D 16 17 D 18 C 20 C 19 21 C B 23 22 A 24 A C 25 A 26 27 C B 28 C 29 D 30 C 31 D 32 C 33 D 34 C 35 A 36 A 37 A 38 D 40 D 39 B 41 D 42 A 43 C 44 A 45 C 46 47 49 D B B 48 C 50 C ... A - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C A A B C A A C 11 10 A D 13 A 12 D 14 D D 15 D 16 17 D 18 C 20 C 19 21 C B 23 22 A 24 A... 1 + + ··· + 1.2 2.3 n(n + 1) B C D ! 12 + 22 + · · · + n2 n3 B C D C D +∞ Câu 24 [3-1133d] Tính lim A Trang 2/5 Mã đề Câu 25 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim... log(mx) Câu 14 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = Câu 13 [122 10d] Xét số thực dương x, y thỏa mãn log3 Câu 15 [122 4d] Tìm tham