Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A −∞ B +∞ C 1 D 0 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1] Tính lim x→3 A −∞ x−3 bằng? x+3 B +∞ C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a D lim f (x) = f (a) C f (x) có giới hạn hữu hạn x → a √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − 2n + Câu Tính giới hạn lim 3n + B A x→a C D D C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B − sin 2x C −1 + sin x cos x D −1 + sin 2x Câu Giá trị lim(2x2 − 3x + 1) x→1 A B − 2n Câu [1] Tính lim bằng? 3n + 1 A B 3 x+1 Câu Tính lim x→+∞ 4x + A B √ √ 4n2 + − n + Câu Tính lim 2n − A B 4x + bằng? x→−∞ x + B C D +∞ C D − C D C D +∞ Câu 10 [1] Tính lim A −4 C −1 √ Câu 11 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 √ D − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C log2 2020 D 13 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 11 + 19 C Pmin = D Pmin = Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x + √ y √ 18 11 − 29 11 − 19 A Pmin = B Pmin = 21 Trang 1/5 Mã đề Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? " nhỏ! biểu thức P = x + 2y thuộc tập ! 5 ;3 B (1; 2) C 2; A D [3; 4) 2 Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m < D m ≤ Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 64 C 63 D 62 Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x + A xy0 = −ey − B xy0 = −ey + C xy0 = ey − D xy0 = ey + Câu 21 Tính lim A cos n + sin n n2 + B −∞ Câu 22 Dãy số sau có giới hạn khác 0? n+1 A √ B n n C C n D +∞ D sin n n + + ··· + n Mệnh đề sau đúng? n2 + 1 B lim un = D Dãy số un giới hạn n → +∞ ! 1 + ··· + 1+2 + + ··· + n C D +∞ Câu 23 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = + B Câu 24 [3-1131d] Tính lim A n−1 Câu 25 Tính lim n +2 A B Câu 26 Tính lim n+3 A B Câu 27 Phát biểu sau sai? A lim k = với k > n C lim √ = n C D C D B lim qn = với |q| > D lim un = c (Với un = c số) Trang 2/5 Mã đề Câu 28 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n B u = A un = n 5n + n2 (n + 1)2 n2 − 3n n2 − D u = n n2 5n − 3n2 ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2 2 + + ··· + n Câu 30 [3-1133d] Tính lim n3 A B C +∞ D 3 d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 C un = Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 19 17 Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D 2 Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 5a 8a A B C D 9 9 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 Trang 3/5 Mã đề [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 19 17 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D Cả ba câu sai Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) C f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 44 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 45 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) B dx = log |u(x)| + C u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 46 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Trang 4/5 Mã đề Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Câu 48 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 50 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B D A D D C C D 10 B 11 C 12 13 C 14 B C 15 A 16 17 A 18 C 20 C 19 D 21 A 23 22 B 25 27 B 24 A 26 C B 29 B C 28 A C 30 A 31 D 32 D 33 D 34 D 35 C 37 36 D 38 A 39 C 40 A 41 C 42 43 A 45 44 B D B 46 A 48 47 A 49 B D 50 A D ... lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B D A D D C C D 10 B 11 C 12 13 C 14 B C 15 A 16 17 A 18 C 20 C 19 D 21 A 23 22 B 25 27... m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 18 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D √ Câu 19 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m...Câu 14 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 15 [122 20d-2mh202047] Xét số thực dương