1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (8)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,6 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 1 B 2 C 3 D 0 Câu 2 Tí[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tìm giới hạn lim A Câu Tính lim x→+∞ C D B C D − x−2 x+3 A −3 Câu Tính giới hạn lim A 2n + n+1 B 2n + 3n + B Câu Tính giới hạn lim x→2 A Câu Tính lim x→1 C x2 − 5x + x−2 B −1 x3 − x−1 B +∞ √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B x+1 Câu Tính lim x→+∞ 4x + A A B D C D C −∞ D C D C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = a x→a x→a x−3 bằng? x→3 x + A B +∞ x+2 Câu 10 Tính lim bằng? x→2 x A B x→a Câu [1] Tính lim C −∞ D C D Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Câu 12 [1229d] Đạo hàm hàm số y = log 2x x2 1 − log 2x − ln 2x C y0 = D y0 = ln 10 x x ln 10 Câu 13 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey + C xy0 = ey − D xy0 = −ey + A y0 = − ln 2x 2x3 ln 10 D Vô nghiệm B y0 = 2x3 Trang 1/5 Mã đề Câu 14 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [−1; 0] √ Câu 17 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m > D m < 4 4 Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 Câu 23 Tính lim A n+3 C un = n2 + n + (n + 1)2 D un = D ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 25 Tính lim A B C B C D C D n2 − 5n − 3n2 2n2 − 3n6 + n4 7n2 − 2n3 + Câu 26 Tính lim 3n + 2n2 + A - B Câu 27 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = + + ··· + n Mệnh đề sau đúng? n2 + B lim un = D Dãy số un khơng có giới hạn n → +∞ Trang 2/5 Mã đề Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C un D −∞ Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ D Nếu lim un = a > lim = lim ! 1 + ··· + Câu 30 [3-1131d] Tính lim + 1+2 + + ··· + n A B C D +∞ 2 √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 a 38 3a B C D A 29 29 29 29 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 19 17 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C D 4a Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C D 2a 0 0 Câu 37.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C D A √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a B A a C D 2 Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 8a 5a B C D A 9 9 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (II) (III) C (I) (III) D Cả ba mệnh đề Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (II) D Chỉ có (I) Trang 4/5 Mã đề Câu 45 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C Z D g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 46 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai Câu 47 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 48 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D 0dx = C, C số B xα+1 + C, C số α+1 Câu 49 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 50 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D D A D D C 12 13 C 14 A 15 D 16 17 D 18 A 19 A 20 21 A 22 A 23 B 24 25 B 26 A C 29 31 B C 10 A 11 27 C D D B D C 28 D 30 A B 32 C 34 33 A 35 C D 36 C 37 B 38 D 39 B 40 D 41 D 42 43 A 45 C 47 A 49 44 C 46 C 48 C 50 A C B ... trị lớn K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D D A D D C 12 13 C 14 A 15 D 16 17 D 18 A 19 A 20 21 A 22 A 23 B 24 25 B 26 A... Mệnh đề sau đúng? n2 + B lim un = D Dãy số un khơng có giới hạn n → +∞ Trang 2/5 Mã đề Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C un D −∞ Câu 29 Trong mệnh đề đây, mệnh đề. ..Câu 14 [122 13d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 15 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D q Câu 16 [122 16d]

Ngày đăng: 10/03/2023, 23:25