Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 3 B 1 C 0 D 2 Câu 2 Giá t[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→2 A x+2 bằng? x B C D C +∞ D C D − C +∞ D C D −1 Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu [1] Tính lim A Câu Tính lim x→3 A −3 − n2 bằng? 2n2 + 1 B x2 − x−3 B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B − 2n Câu [1] Tính lim bằng? 3n + 1 A B − 3 Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B −1 x − 12x + 35 25 − 5x D C D C − D C D C D C Câu Tính lim x→5 A −∞ B +∞ 2−n n+1 A −1 B 2n + Câu 10 Tìm giới hạn lim n+1 A B Câu Giá trị giới hạn lim Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 18 11 − 29 C Pmin = D Pmin = 21 Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − 19 = Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C (1; 2) D [3; 4) A 2 √ ab Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) √ √ − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 18 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 Câu 21 Dãy số sau có giới hạn khác 0? sin n n+1 B A n n − 4.2 x+ 1−x2 C √ n D n D Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim = ±∞ lim ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un D Nếu lim un = a > lim = lim = +∞ Câu 23 Tính lim A 2n2 − 3n6 + n4 B 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B 7n2 − 2n3 + Câu 25 Tính lim 3n + 2n2 + A B - 3 C ! D C D C Trang 2/5 Mã đề cos n + sin n n2 + B −∞ C +∞ ! 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ Câu 28 Trong khẳng định có khẳng định đúng? Câu 26 Tính lim A D D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B + 22 + · · · + n2 [3-1133d] Tính lim n3 B Tính lim n+3 B C D Câu 29 A Câu 30 A C +∞ D C D Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C D a A [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 38 3a B C D A 29 29 29 29 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 0 0 Câu 35.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 A B a 57 C D 19 17 19 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 3a D 2a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a C a D A Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 42 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) xác định K Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 44 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) Câu 46 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = ln |x| + C, C số x D xα dx = D Cả hai sai xα+1 + C, C số α+1 dx = x + C, C số Câu 47 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Z B Nếu Z C Nếu Z D Nếu f (x)dx = Z f (x)dx = Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R g(x)dx f (x) , g(x), ∀x ∈ R Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Không có câu D Câu (I) sai sai Câu 50 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D A B A B D B D 10 D 11 B 12 C 13 B 14 C 15 B 16 A 17 C 18 19 C 20 A 22 21 A 23 B 24 A 25 B 26 27 B 28 29 B 30 A 31 B 32 33 B 34 A 37 B 38 A 39 B 40 A 41 B 42 43 D 49 D B C D B 44 B 46 D 47 D 36 C 35 45 C D B 48 A C 50 B ... 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D A B A B D B D 10 D 11 B 12 C 13 B 14 C 15 B 16 A 17 C 18 19 C 20 A 22 21 A 23 B 24 A... [122 10d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − 19 = Câu 15 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 16 [122 20d-2mh202047]... ≤ Câu 18 [122 15d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 Câu 21 Dãy số sau có giới hạn khác 0? sin n n+1 B A n n − 4.2 x+ 1−x2 C √ n D n D Câu 22 Trong mệnh đề đây, mệnh đề sai? A