Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 0 B 7 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 2n − Câu Tính lim 2n + 3n + A −∞ B D +∞ C Câu Phát biểu sau sai? A lim = n C lim k = n Câu Giá trị lim (3x2 − 2x + 1) B lim qn = (|q| > 1) D lim un = c (un = c số) x→1 B +∞ √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A A Câu Dãy số có giới hạn 0?! n A un = n − 4n B un = x2 − 12x + 35 x→5 25 − 5x A +∞ B − Câu 10.! Dãy số sau có giới !n hạn 0? n A B e C D C D +∞ C − D !n −2 C un = D un = n3 − 3n n+1 Câu Tính lim √ Câu 11 [12215d] Tìm m để phương trình x+ 3 A ≤ m ≤ B < m ≤ 4 D −∞ !n C − !n D C 1−x2 √ − 4.2 x+ 1−x2 C m ≥ − 3m + = có nghiệm D ≤ m ≤ Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A 2; B [3; 4) C (1; 2) D ;3 2 √ ab Trang 1/5 Mã đề Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ 1 Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D log(mx) = có nghiệm thực Câu 18 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 2] ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n A +∞ B C D 2 Câu 22 Phát biểu sau sai? 1 A lim √ = B lim k = với k > n n n C lim q = với |q| > D lim un = c (Với un = c số) 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A B Câu 24 Tính lim n+3 A B n−1 Câu 25 Tính lim n +2 A B 2n2 − Câu 26 Tính lim 3n + n4 A B C - D C D C D C D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn khác 0? n+1 A B √ n n C Câu 30 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C un = n sin n n ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 29 Tính lim n2 + A B −∞ C +∞ D D − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a 2a a A a B C D 2 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab C √ D √ B √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B C 2a D 4a [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a Khoảng cách từ A đến (S BC) Trang 3/5 Mã đề √ √ √ a 57 a 57 2a 57 B C D 19 17 19 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 Câu 41 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x √ A a 57 Câu 42 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B [ f (x) − g(x)]dx = f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 47 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 48 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 C xα dx = + C, C số D 0dx = C, C số α+1 Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B B B C A C C 10 D 12 D D 11 A 13 D 14 15 D 16 17 C 18 19 C 20 21 C 25 24 D 28 29 A 30 35 C C 38 D C D C D C D B 40 A 41 A 42 A 44 B 45 C 46 47 C 48 49 B 36 39 43 C 34 B 37 B 32 B 33 D 26 27 A 31 C 22 B 23 C D 50 A D B C ... câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B B B C A C C 10 D 12 D D 11 A 13 D 14 15 D 16 17 C 18 19 C 20 21 C 25 24 D 28 29... Pmin = D Pmin = 21 9 Câu 15 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 14 [122 10d] Xét số thực dương x, y thỏa mãn log3 Câu 16 [122 14d] Với giá trị m phương... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề Câu