1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (448)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,16 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A +∞ B 1 C −∞ D 0 C[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1] Tính lim A +∞ x→3 x−3 bằng? x+3 B Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) Câu Tính lim x→+∞ C −∞ D B lim qn = (|q| > 1) D lim k = n x−2 x+3 A B 1 − 2n bằng? 3n + 1 A B x −9 Câu Tính lim x→3 x − A −3 B +∞ D − C −3 Câu [1] Tính lim C D − C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim+ f (x) = lim− f (x) = a x→a x→a x→a C lim f (x) = f (a) x→a D f (x) có giới hạn hữu hạn x → a x→a Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C − sin 2x D −1 + sin x cos x Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = −ey − C xy0 = −ey + D xy0 = ey + 2 Trang 1/5 Mã đề 1 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [0; 2] log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C +∞ D A 2 ! 3n + Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D n−1 Câu 23 Tính lim n +2 A B C D Câu 24 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) B lim √ = n D lim qn = với |q| > Câu 25 Dãy số sau có giới hạn khác 0? sin n A B n n C n+1 n D √ n Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1.2 2.3 n(n + 1) C D A B cos n + sin n Câu 28 Tính lim n2 + A −∞ B C D +∞ 12 + 22 + · · · + n2 Câu 29 [3-1133d] Tính lim n3 A +∞ B C D 3 7n2 − 2n3 + Câu 30 Tính lim 3n + 2n2 + A - B C D 3 0 0 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 27 Tính lim Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 34 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a D a C [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D 2 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K C (II) (III) D (I) (III) B f (x) xác định K D f (x) liên tục K Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) Trang 4/5 Mã đề (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) D Chỉ có (I) Câu 47 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B Z dx = ln |x| + C, C số x D 0dx = C, C số xα dx = xα+1 + C, C số α+1 Câu 50 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C C 14 15 A D B 16 A 17 D 19 18 A C 20 B D 23 25 C D 24 D 26 D D 28 29 D 30 A 31 C B 22 27 B 32 C 34 B 35 A 36 B 39 A 41 D 43 A 45 B 12 A 13 37 C 10 B 11 A 33 D D 21 B B C B 38 D 40 D 42 D 44 D 46 C C 47 D 48 49 D 50 D D ... 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C C 14 15 A D B 16 A 17 D 19 18 A C 20 B D 23 25 C D 24 D 26 D D 28 29 D 30 A 31 C B 22 27 B 32 C 34 B 35 A 36 B 39 A 41 D 43 A 45 B 12 A 13... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề Câu 44 Hàm số f... = B m ≤ C m < ∨ m > D m < Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C D 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 18 [122 10d] Xét số thực dương x, y thỏa

Ngày đăng: 10/03/2023, 23:09