1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 12 (447)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,13 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A − 2 5 B −∞ C +∞ D[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A − B −∞ Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x−3 bằng? Câu [1] Tính lim x→3 x + A B +∞ C +∞ D C D +∞ C −∞ D Câu Dãy !n số sau có giới !n hạn 0? !n !n 5 A − B C D 3 e x+1 Câu Tính lim x→+∞ 4x + 1 A B C D 3 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = a x→a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D f (x) có giới hạn hữu hạn x → a x→a x→a √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C − D 4 − 2n Câu [1] Tính lim bằng? 3n + 2 B − C D A 3 2n + Câu Tính giới hạn lim 3n + A B C D 2 2n − Câu 10 Tính lim 2n + 3n + A +∞ B −∞ C D Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (1; 3; 2) D (2; 4; 6) Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = ey + D xy0 = −ey − Câu 15 [3-12217d] Cho hàm số y = ln A xy0 = ey − √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 log(mx) = có nghiệm thực Câu 17 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x B y0 = C y0 = D y0 = A y0 = 3 x ln 10 2x ln 10 2x ln 10 x3 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 16 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 20 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m > D m ≥ Câu 21 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n Câu 22 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 Câu 23 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B B lim un = c (Với un = c số) D lim √ = n C un = C n2 + n + (n + 1)2 D un = − 2n 5n + n2 D - Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 25 Tính lim A n+3 B n−1 Câu 26 Tính lim n +2 A B 12 + 22 + · · · + n2 Câu 27 [3-1133d] Tính lim n3 A +∞ B C D C D C D Trang 2/5 Mã đề Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B Câu 29 Dãy số sau có giới hạn khác 0? 1 A B √ n n Câu 30 Tính lim A −∞ cos n + sin n n2 + B C C sin n n C +∞ un D −∞ D n+1 n D Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C D 2a B A a d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 4a A 2a B Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B C √ D √ A √ 2 2 2 a +b a +b a +b a + b2 √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 3a 58 a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x dx = x + C, C số C 0dx = C, C số D Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 45 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Trang 4/5 Mã đề (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 49 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B A C A 11 B 10 B 12 13 D C B 14 C 16 15 A 17 19 D 18 A C B 21 A D 23 D 20 D 22 D 24 C D 26 25 A 27 D 28 B 29 D 30 B 31 C 33 35 32 A D C 38 40 B 41 A 42 43 A 44 A 45 C 47 49 D 36 B 37 A 39 C 34 46 48 D 50 A B D C B D ... Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B A C A 11 B 10 B 12 13 D C B 14 C 16 15 A 17 19 D 18 A C B 21 A D 23 D 20 D 22... C m < ∨ m = D m ≤ log 2x Câu 18 [122 9d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x B y0 = C y0 = D y0 = A y0 = 3 x ln 10 2x ln 10 2x ln 10 x3 Câu 19 [122 19d-2mh202050] Có số nguyên x... mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số Câu 16 [122 15d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 − 4.2 x+ 1−x2 Câu 20 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4

Ngày đăng: 10/03/2023, 23:08