Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A 3 B 6 C +∞ D −3 Câu 2 Tính[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x2 − Câu Tính lim x→3 x − A x3 − Câu Tính lim x→1 x − A +∞ B C +∞ D −3 B C −∞ D C D Câu Giá trị lim(2x − 3x + 1) x→1 A +∞ B Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim− f (x) = f (b) D lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b 2−n Câu Giá trị giới hạn lim n+1 A B − 2n Câu [1] Tính lim bằng? 3n + 1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 x→a x→b C −1 D 2 C − D C D −4 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a C lim [ f (x) + g(x)] = a + b D lim = x→+∞ x→+∞ g(x) b x−3 Câu [1] Tính lim bằng? x→3 x + A B C +∞ D −∞ Câu 10 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B − sin 2x C + sin 2x D −1 + sin 2x Câu 11 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x 0 A y0 = B y = C y = D y = x3 2x3 ln 10 2x3 ln 10 x3 ln 10 √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 62 D 64 Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Trang 1/5 Mã đề Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B ;3 C [3; 4) D 2; 2 √ ab log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < ∨ m > Câu 16 [1226d] Tìm tham số thực m để phương trình A m < B m ≤ Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C Câu 18 [12213d] Có giá trị nguyên m để phương trình nhất? A B D 3|x−1| C = 3m − có nghiệm D Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 22 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) B lim qn = với |q| > D lim = với k > nk + + ··· + n Mệnh đề sau đúng? Câu 23 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ cos n + sin n Câu 24 Tính lim n2 + A B −∞ C D +∞ n−1 Câu 25 Tính lim n +2 A B C D Câu 26 Tính lim n+3 A B C D ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 28 Dãy số sau có giới hạn khác 0? 1 sin n n+1 A B √ C D n n n n Trang 2/5 Mã đề Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a B C D A 9 9 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 30 [3-1131d] Tính lim Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C D 2a 0 0 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab D √ B √ C A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) Trang 3/5 Mã đề √ √ √ 3a 38 3a 58 3a a 38 A B C D 29 29 29 29 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 a b2 + c2 abc b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) D Cả hai Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Không có câu C Câu (III) sai D Câu (II) sai sai Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 47 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Trang 4/5 Mã đề Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (II) D (I) (III) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A B C C D 10 D 12 D A D 11 C 13 15 14 A 16 B 17 C 18 A 19 C 20 A D 21 22 23 C 24 25 C 26 27 B 28 29 B 30 31 A 33 C C B C B D B 32 B 35 34 B 36 C 37 C D D 38 C C 39 B 40 41 B 42 B 44 B 43 45 C 47 A 49 D 46 B 48 A 50 C C ... trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A B C C D 10 D 12 D A D 11 C 13 15 14 A 16 B 17 C 18 A 19 C 20 A D... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (II) D (I)... a A B C D a 2 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39