1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (1057)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,76 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = x→+∞ g(x) b D lim [ f (x) − g(x)] = a − b A lim [ f (x)g(x)] = ab B lim x→+∞ C lim [ f (x) + g(x)] = a + b x→+∞ Câu Tính giới hạn lim x→+∞ A −1 x→+∞ 2x + x+1 B C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu [1] Tính lim A − n2 bằng? 2n2 + 1 B − C D Câu Giá trị lim(2x2 − 3x + 1) x→1 A C +∞ B x+1 x→−∞ 6x − B D Câu Tính lim A Câu Tính giới hạn lim x→2 A −1 C x2 − 5x + x−2 B D C D C D Câu Giá trị lim (3x2 − 2x + 1) x→1 B +∞ − 2n Câu [1] Tính lim bằng? 3n + A B 2−n Câu 10 Giá trị giới hạn lim n+1 A B −1 A C C D − D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 18 11 − 29 11 − C Pmin = D Pmin = 21 Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − 19 = Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Trang 1/5 Mã đề √ √ Câu 13 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C m ≥ D ≤ m ≤ 4 Câu 14 [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 D ;3 A [3; 4) B (1; 2) C 2; 2 2 Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e + C xy0 = −ey + D xy0 = ey − Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 log(mx) Câu 19 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < D m < ∨ m > Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D 2n2 − Câu 21 Tính lim 3n + n4 A B C D cos n + sin n Câu 22 Tính lim n2 + A B −∞ C D +∞ + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 24 Dãy số sau có giới hạn khác 0? n+1 B √ A n n C sin n n Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim B +∞ C ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 Câu 27 Tính lim n+3 A B C A D n un D −∞ D D Trang 2/5 Mã đề 7n2 − 2n3 + 3n3 + 2n2 + A B n−1 Câu 29 Tính lim n +2 A B Câu 28 Tính lim C D - C D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a B a A C 2a D Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a B C D A 9 9 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 Trang 3/5 Mã đề √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 3a 38 a 38 A B C D 29 29 29 29 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 45 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) xác định K Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 48 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = B xα+1 + C, C số α+1 Z D dx = x + C, C số dx = ln |x| + C, C số x Câu 49 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 50 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B A B A D B D D D 10 11 D 12 C 13 D 14 C 15 D 16 17 D 18 A 19 A B 20 A 21 C 22 23 A 24 A 25 A 26 27 D 28 29 D 30 C C D B 32 31 A 33 B B D 34 A 35 D 36 C 37 D 38 C 39 A 40 A 41 D 42 A 43 D 44 45 47 49 46 C D 48 50 A C D B C ... với f (x) có đạo hàm R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B A B A D B D D D 10 11 D 12 C 13 D 14 C 15 D 16 17 D 18 A 19 A B 20 A... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu... đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 Trang 3/5 Mã đề √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng

Ngày đăng: 10/03/2023, 21:45

w