1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (1003)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,57 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A −1 B 5 C 0 D[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính giới hạn lim x→2 A −1 x2 − 5x + x−2 B Câu !Dãy số sau có giới !n hạn 0? n A B e C D !n C − !n D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x 2−n Câu Giá trị giới hạn lim n+1 A −1 B C 2n + Câu Tìm giới hạn lim n+1 A B C 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C 2 Câu Giá trị lim(2x2 − 3x + 1) x→1 A B D −1 + sin x cos x D D D −1 D +∞ C x+2 bằng? x→2 x A B C D x −9 Câu Tính lim x→3 x − A +∞ B C D −3 2n + Câu 10 Tính giới hạn lim 3n + 2 A B C D 2 x x Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu Tính lim Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C Vô số D 64 Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D √ Câu 15 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A (1; 2) B [3; 4) C ;3 D 2; 2 √ ab log(mx) = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m ≤ D m < ∨ m > Câu 18 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 − 19 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 17 [1226d] Tìm tham số thực m để phương trình 12 + 22 + · · · + n2 n3 B +∞ Câu 21 [3-1133d] Tính lim A Câu 22 Dãy số sau có giới hạn 0? n2 − − 2n A un = B u = n 5n − 3n2 5n + n2 Câu 23 Tính lim C n2 + n + C un = (n + 1)2 2n2 − 3n6 + n4 A B C D n2 − 3n D un = n2 D un A B C +∞ D −∞ ! 3n + 2 + a − 4a = Tổng phần tử Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim Câu 26 Dãy số sau có giới hạn khác 0? sin n A B n n C √ n D Câu 27 Tính lim n+3 A C D B Câu 28 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) n+1 n B lim qn = với |q| > 1 D lim √ = n Câu 29 Trong khẳng định có khẳng định đúng? Trang 2/5 Mã đề (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 30 Tính lim A −∞ B cos n + sin n n2 + B C C +∞ D D d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 13 26 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a B C D A 9 9 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C D a 3 0 0 Câu 35.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C 3a D 3a Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 Trang 3/5 Mã đề √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 A B C D 29 29 29 29 Câu 41 ! sau sai? Z Mệnh đề f (x)dx = f (x) A B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Cả hai D Chỉ có (II) Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau Trang 4/5 Mã đề (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 48 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) có giá trị lớn K D f (x) liên tục K Câu 50 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D dx = x + C, C số B xα+1 + C, C số α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A A C A A C 11 10 D 13 A D 15 17 C B B 12 C 14 C 16 C 18 A 19 A 20 21 D 22 23 B 24 A 25 B 26 27 C 28 C B D B D 29 B 30 31 B 32 B 34 B 33 A 35 C 37 36 A D 38 39 A 41 D 43 A 40 D 42 D 44 A 45 B 46 47 B 48 A 49 B D 50 B C ... F(x), G(x) Xét mệnh đề sau Trang 4/5 Mã đề (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C... B xα+1 + C, C số α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A A C A A C 11 10 D 13 A D 15 17 C B B 12 C 14 C 16 C 18 A 19 A 20... khoảng (a; b) D Cả ba câu sai Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k

Ngày đăng: 10/03/2023, 21:45

w