Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 9 B 0 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ x+1 Câu Tính lim x→+∞ 4x + A B 3 x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A B − 5 Câu Dãy số! có giới hạn 0? n −2 B un = n2 − 4n A un = C D C D C D C −∞ D +∞ !n C un = D un = n3 − 3n n+1 x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B C D −1 x+1 Câu Tính lim x→−∞ 6x − 1 A B C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a C lim f (x) = f (a) D f (x) có giới hạn hữu hạn x → a x→a √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B C D 4 Câu 10.! Dãy số sau có giới !n hạn 0? !n !n n 5 A B C D − e 3 Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m ≥ D m > 4 4 Câu 13 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A 2; B [3; 4) C ;3 D (1; 2) 2 Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 13 D log2 2020 log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x ln 10 x 2x ln 10 2x ln 10 Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ √ √ Câu 20 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B < m ≤ C m ≥ D ≤ m ≤ 4 ! 1 Câu 21 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 + ··· + Câu 23 [3-1131d] Tính lim + 1+2 + + ··· + n A +∞ B C D 2 un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C +∞ D −∞ 2 Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a , lim = ±∞ lim = 7n2 − 2n3 + Câu 26 Tính lim 3n + 2n2 + A - B C D Trang 2/5 Mã đề Câu 27 Tính lim 2n2 − 3n6 + n4 Câu 28 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 cos n + sin n Câu 29 Tính lim n2 + A −∞ B n−1 Câu 30 Tính lim n +2 A B A B C C un = D 1 − 2n 5n + n2 D un = C +∞ D C D n2 − 5n − 3n2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 3a a 38 B C D A 29 29 29 29 Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a, S D = Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C a D A B 2a Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ 2 2 a +b a +b a +b a2 + b2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D 0 0 Câu 36.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 19 17 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B D A a C a d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 2a A 4a B Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (III) sai sai Câu 42 Xét hai khẳng đinh sau D Câu (I) sai (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) Câu 45 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K C Cả ba mệnh đề D (I) (II) B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 46 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B dx = x + C, C số Z x Z xα+1 C 0dx = C, C số D xα dx = + C, C số α+1 Trang 4/5 Mã đề Câu 47 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) D Chỉ có (I) Câu 50 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi A A C C A D 11 C 10 C 12 A 13 A 14 15 C 17 A 19 B 16 C 18 C 20 A C D 22 21 A 23 D 24 B 26 A B 28 27 A 29 D A 25 D C 30 B 31 A D 32 C 33 D 34 D 35 D 36 D 38 D 37 C 39 B 40 41 B 42 43 C 45 47 D C D 46 D 50 C 44 48 49 A B B C ... hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi A A C C A D 11 C 10 C 12 A 13 A 14 15 C 17 A 19 B 16 C 18 C 20 A C D 22 21... nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) Câu... C số B dx = x + C, C số Z x Z xα+1 C 0dx = C, C số D xα dx = + C, C số α+1 Trang 4/5 Mã đề Câu 47 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x)