Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A 0 B 1 C +∞ D −∞ C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1] Tính lim x→3 A x−3 bằng? x+3 B Câu !Dãy số sau có giới !hạn 0? n n A B − 3 x+1 x→+∞ 4x + B C +∞ D −∞ !n C !n D e Câu Tính lim A C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Phát biểu sau sai? A lim un = c (un = c số) C lim = n 2n + Câu Tìm giới hạn lim n+1 A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 Câu Giá trị lim(2x − 3x + 1) C B lim qn = (|q| > 1) D lim k = n C D C +∞ D C D +∞ D −∞ x→1 A B x − 12x + 35 Câu Tính lim x→5 25 − 5x A − B +∞ x2 − Câu 10 Tính lim x→3 x − A B D C C −3 D +∞ Câu 11 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x 0 A y0 = B y0 = C y = D y = 2x ln 10 x3 2x3 ln 10 x3 ln 10 − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 3) D (2; 4; 4) log(mx) = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 Câu 15 [1226d] Tìm tham số thực m để phương trình Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D 1 Câu 18 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D 1 Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey + C xy0 = −ey + D xy0 = ey − √ Câu 20 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ n−1 Câu 21 Tính lim n +2 A B 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A B +∞ Câu 23 Tính lim A n+3 B Câu 24 Phát biểu sau sai? A lim √ = n n C lim q = với |q| > 1−x2 √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 C C D D C D 1 = với k > nk D lim un = c (Với un = c số) B lim Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 D ! D Trang 2/5 Mã đề Câu 27 Tính lim A Câu 28 Tính lim 7n2 − 2n3 + 3n3 + 2n2 + B C - D 2n2 − 3n6 + n4 D + + ··· + n Mệnh đề sau đúng? Câu 29 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 B C D A 29 29 29 29 d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C 3a D Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 2a 8a A B C D 9 9 A B C Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C D a Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C D a Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 0 0 Câu 40 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C a D A 2 Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 42 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Z Z !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 43 đề sau Z [1233d-2] Mệnh Z Z sai? A Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R C Câu 44 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Trang 4/5 Mã đề Câu 46 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C dx = x + C, C số D 0dx = C, C số Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai D Chỉ có (I) Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C Cả ba mệnh đề D (I) (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C A B A C C C 10 A 12 11 A 13 D D 14 A 15 B 16 17 B 18 D D B 19 D 20 21 D 22 C 24 C 26 C 23 C 25 A 27 C 28 D 29 C 30 D 32 D 31 A 33 D 35 C D 37 39 34 C 36 C 38 C 40 A C 41 A 42 A 43 B 44 45 B 46 A 47 A 49 B C 48 D 50 D ... ba mệnh đề D (I) (II) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C A B A C C C 10 A 12 11 A 13 D D 14 A 15 B 16 17 B 18 D D B 19 D 20... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C Cả ba mệnh đề D (I) (II)... 19 19 Câu 37 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C D a Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C