Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C + sin 2x D −1 + sin 2x Câu Dãy số! có giới hạn 0? n −2 n3 − 3n A un = B un = n+1 C un = n − 4n !n D un = Câu !Dãy số sau có giới !hạn 0? n n 5 B − A 3 !n C !n D e C D x+1 x→−∞ 6x − B Câu Tính lim A Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a Câu Giá trị lim(2x2 − 3x + 1) x→1 A B +∞ C x − 12x + 35 25 − 5x D Câu Tính lim x→5 A +∞ B −∞ C D − 2−n n+1 B C D −1 C +∞ D Câu Giá trị giới hạn lim A Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 A B Câu 11 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 12 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m < D m ≥ 4 4 Trang 1/5 Mã đề Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 62 C 64 D 63 Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = ey + C xy0 = −ey + D xy0 = −ey − Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 2020 C 13 D log2 2020 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 + 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m ≤ D m < log(mx) Câu 20 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A B C D +∞ 3 Câu 22 Phát biểu sau sai? A lim un = c (Với un = c số) B lim k = với k > n C lim qn = với |q| > D lim √ = n ! 1 + + ··· + Câu 23 Tính lim 1.2 2.3 n(n + 1) A B C D Câu 24 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = ! un D Nếu lim un = a < lim = > với n lim = −∞ ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 Trang 2/5 Mã đề Câu 26 Dãy số sau có giới hạn khác 0? n+1 A B √ n n 2n2 − Câu 27 Tính lim 3n + n4 A B n−1 Câu 28 Tính lim n +2 A B cos n + sin n Câu 29 Tính lim n2 + A +∞ B C sin n n D n C D C D C D −∞ un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 19 17 Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C D a 2 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Trang 3/5 Mã đề Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C A 2a D a 0 0 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Câu (III) sai D Không có câu sai Câu 42 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 43 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 44 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Z D 0dx = C, C số B Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (III) Câu 47 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ !0 Z C f (x)dx = f (x) A f (t)dt = F(t) + C B Z k f (x)dx = k D (I) (II) Z f (x)dx, k số Z Z D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Cả hai sai D Chỉ có (II) Câu 49 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 50 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx k f (x)dx = f B Z Z g(x)dx D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A C C C C C D 10 A C 11 12 A 13 B 14 A 15 B 16 A 17 A 19 18 A 20 B 21 A B 22 23 B 24 A 25 B 26 A 27 29 D C 28 C B 30 B C 31 D 32 D 33 D 34 D 35 A 37 39 C B D 38 C B 42 A 44 C 45 A 47 C 40 41 43 36 D 49 A C 46 D 48 D 50 D ... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III)... k , Z f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A C C C C C D 10 A C 11 12 A 13 B 14 A 15 B 16 A 17 A 19 18 A 20 B 21... C, với f (x) có đạo hàm R Câu 50 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx k f (x)dx