1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (859)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,38 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = n[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 !n C un = !n −2 D un = Câu !Dãy số sau có giới !hạn 0? n n A B − e !n C !n D x+1 Câu Tính lim x→−∞ 6x − A B − 2n Câu [1] Tính lim bằng? 3n + A B − C D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C f (x) có giới hạn hữu hạn x → a 2n + Câu Tính giới hạn lim 3n + B A x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ 2x + Câu 10 Tính giới hạn lim x→+∞ x + 1 A B 2 x→a x→a D lim f (x) = f (a) x→a C D C +∞ D C −1 D log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x A y0 = B y0 = C y0 = x 2x ln 10 2x3 ln 10 D y0 = − ln 2x x3 ln 10 Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m ≥ D m < Trang 1/5 Mã đề Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < ∨ m = D m < Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 18 11 − 29 11 − A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 + + ··· + Câu 23 Tính lim 1.2 2.3 n(n + 1) A B C D 2 Câu 24 Dãy số sau có giới hạn 0? n2 − − 2n n2 + n + n2 − 3n A un = B un = C un = D un = n2 5n − 3n2 5n + n2 (n + 1)2 cos n + sin n n2 + B −∞ n−1 Câu 26 Tính lim n +2 A B Câu 25 Tính lim A +∞ Câu 27 Dãy số sau có giới hạn khác 0? n+1 A √ B n n C D C D C sin n n D n Trang 2/5 Mã đề 1 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 2n − Câu 29 Tính lim 3n + n4 A B C Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! D +∞ D ! un D Nếu lim un = a < lim = > với n lim = −∞ 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 3a 58 a 38 B C D A 29 29 29 29 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C a D [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ a 57 2a 57 a 57 A B C D a 57 19 19 17 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 17 19 19 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 5a 2a A B C D 9 9 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C D 2a A a Câu 41 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (II) sai D Câu (III) sai sai Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số A 0dx = C, C số B x Z Z xα+1 C xα dx = + C, C số D dx = x + C, C số α+1 Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 45 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K C D B f (x) có giá trị lớn K D f (x) xác định K Trang 4/5 Mã đề Câu 46 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z Z k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Cả hai D Chỉ có (II) Câu 48 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C B B B D D 10 11 D 12 13 D 14 15 D 21 22 B D B D B C 26 B 28 B 34 D D B 36 C D 38 B 39 A 40 A B 42 B 44 A C 45 A 47 D 32 B 35 43 C 30 A 31 41 B 24 29 A 37 C 20 C 25 33 B 18 A 19 27 C 16 B 17 A 23 D 46 D 48 49 A 50 A C D ... (III) D Cả ba mệnh đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C B B B D D 10 11 D 12 13 D 14 15 D 21 22 B D B D B C 26 B 28 B 34 D... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề -... sin n n D n Trang 2/5 Mã đề 1 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 2n − Câu 29 Tính lim 3n + n4 A B C Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim

Ngày đăng: 10/03/2023, 21:38

w