Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 0 B 1 C 2 D +∞[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B −1 C D +∞ C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B C +∞ D 2 Câu Phát biểu sau sai? 1 A lim k = B lim = n n C lim qn = (|q| > 1) D lim un = c (un = c số) Câu Dãy !n số sau có giới !n hạn 0? A − B 3 !n C !n D e − 2n Câu [1] Tính lim bằng? 3n + 2 A − B C D 3 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a = C lim [ f (x) − g(x)] = a − b D lim x→+∞ x→+∞ g(x) b x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B C −1 D Câu 10 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D f (x) có giới hạn hữu hạn x → a x→a x→a Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 6) D (2; 4; 3) √ Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A 2; B (1; 2) C ;3 D [3; 4) 2 Trang 1/5 Mã đề Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 18 11 − 29 11 − 19 C Pmin = D Pmin = 21 Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = √ 11 − B Pmin = Trong khẳng định sau đây, khẳng định đúng? Câu 16 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + 1 Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ q Câu 18 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [−1; 0] log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 2x ln 10 x ln 10 x3 √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 64 D 62 ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n A +∞ B C D 2 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A +∞ B C D 3 cos n + sin n Câu 23 Tính lim n2 + A B +∞ C −∞ D 2n − Câu 24 Tính lim 3n + n4 A B C D + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 B lim un = A lim un = C lim un = D Dãy số un giới hạn n → +∞ n−1 Câu 26 Tính lim n +2 A B C D Trang 2/5 Mã đề 1 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B Câu 28 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) 7n2 − 2n3 + Câu 29 Tính lim 3n + 2n2 + B A - ! C B D = với k > nk D lim qn = với |q| > B lim C Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ D C −∞ un D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a B C D A 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 36 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a A B C D 9 9 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ a 57 2a 57 a 57 B a 57 D A C 19 19 17 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C D a A 2a B Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 42 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 B Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu sai C Chỉ có (I) D Cả hai câu Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) C dx = log |u(x)| + C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Chỉ có (I) D Cả hai Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (II) sai sai D Câu (III) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A C C B A D C 10 11 C 12 C C 13 B 14 15 B 16 A 17 A C 19 B 18 D 20 D 21 D 22 D 23 D 24 D 25 A 26 27 A 28 29 A 30 B D B 31 B 32 A 33 B 34 D 36 D 35 A 37 C 38 B 39 C 40 B 42 41 A 43 45 D 49 44 C 47 D D C C 46 B 48 B 50 B ... sai D Câu (III) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A C C B A D C 10 11 C 12 C C 13 B 14 15 B 16 A 17 A C 19 B 18 D 20... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II)... (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx