Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 0 B 1 3 C 1 2 D −[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − n2 bằng? 2n2 + 1 1 C D − A B 2 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C lim+ f (x) = lim− f (x) = a D lim f (x) = f (a) Câu [1] Tính lim x→a x→a x→a x − 5x + Câu Tính giới hạn lim x→2 x−2 A B 2n + Câu Tính giới hạn lim 3n + A B x+1 Câu Tính lim x→+∞ 4x + A B Câu Phát biểu sau sai? A lim = n C lim qn = (|q| > 1) x2 − Câu Tính lim x→3 x − A −3 B − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B Câu 10 Dãy số !n có giới hạn 0? !n −2 A un = B un = C −1 D C D C D = nk D lim un = c (un = c số) B lim C +∞ D C D C −1 D C un = n2 − 4n D un = n3 − 3n n+1 D y0 = − ln 2x x3 ln 10 log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x A y0 = B y0 = C y0 = 2x ln 10 2x ln 10 x3 Câu 12 [12213d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D Câu 13 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = ey − C xy0 = −ey + D xy0 = −ey − Trang 1/5 Mã đề Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) Câu 16 [12214d] Với giá trị m phương trình A ≤ m ≤ 1 3|x−2| = m − có nghiệm C < m ≤ B ≤ m ≤ D < m ≤ Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A 2; B (1; 2) C ;3 D [3; 4) 2 √ ab Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [0; 1] Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số cos n + sin n Câu 21 Tính lim n2 + A B +∞ C D −∞ Câu 22 [3-1133d] Tính lim A 12 + 22 + · · · + n2 n3 B 1 + + ··· + Câu 23 Tính lim 1.2 2.3 n(n + 1) A B 2 C +∞ D C D ! Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = v! n un = a > lim = lim = +∞ Câu 25 Tính lim A n+3 B C D Trang 2/5 Mã đề Câu 26 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = Câu 27 Tính lim A + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới hạn n → +∞ D lim un = 2n2 − 3n6 + n4 B C 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 n−1 Câu 29 Tính lim n +2 A B C D ! D D un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D 0 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 8a 5a B C D A 9 9 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 37 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Trang 3/5 Mã đề √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 3a 38 A B C D 29 29 29 29 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 42 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Câu 43 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D Trang 4/5 Mã đề (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Câu (I) sai D Khơng có câu sai Câu 46 !0 sau sai? Z Mệnh đề f (x)dx = f (x) A B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Z Các khẳng định sau Z sai? A Z C Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = F(x) +C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (u)dx = F(u) +C Câu 48 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z B f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D 0dx = C, C số xα dx = xα+1 + C, C số α+1 Câu 50 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C C C D D B D B 10 A D 11 12 B 13 B 14 A 15 B 16 D 18 D 17 C 19 A 20 21 C 22 A 23 C 24 25 A C D C 26 27 B 28 D 29 B 30 D 31 C 32 34 33 A 35 C 36 37 C 38 A 39 A 41 C C 42 B D 44 45 D 46 49 D 40 43 47 B D C B 48 A B D 50 B ... = G(x) khoảng (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C C C D D B D B 10 A D 11 12 B 13 B 14 A 15 B 16 D 18 D 17 C 19 A 20... +∞ Câu 25 Tính lim A n+3 B C D Trang 2/5 Mã đề Câu 26 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = Câu 27 Tính lim A + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới... khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 42 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx