Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A −∞ B 0 C 1 D +∞ Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim A −∞ 2n − 2n2 + 3n + B C D +∞ C D +∞ C D C D C D Câu Giá trị lim(2x2 − 3x + 1) x→1 A B 2x + Câu Tính giới hạn lim x→+∞ x + A B −1 Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2−n Câu Giá trị giới hạn lim n+1 A B −1 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→+∞ x−2 x+3 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B 4 Câu Dãy số có giới hạn 0? n3 − 3n B un = n2 − 4n A un = n+1 Câu 10 Tính lim x→2 A x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) C − D −3 C D !n C un = !n −2 D un = x+2 bằng? x B C D log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m ≤ D m < ∨ m > Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Trang 1/5 Mã đề Câu 14 [12214d] Với giá trị m phương trình A < m ≤ 3|x−2| = m − có nghiệm C < m ≤ B ≤ m ≤ √ √ D ≤ m ≤ Câu 15 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B m ≥ C < m ≤ D ≤ m ≤ A ≤ m ≤ 4 Trong khẳng định sau đây, khẳng định đúng? Câu 16 [3-12217d] Cho hàm số y = ln x + A xy0 = ey − B xy0 = ey + C xy0 = −ey − D xy0 = −ey + 2 Câu 17 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 64 D 62 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Câu 21 Tính lim A Câu 22 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B n+3 B D Vô nghiệm C D - C D Câu 23 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 24 Dãy số sau có giới hạn khác 0? n+1 A B n n Câu 25 Tính lim A n−1 n2 + B C sin n n D √ n C D ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Trang 2/5 Mã đề 1 + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = un Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D 2 + + ··· + n Câu 29 [3-1133d] Tính lim n3 A B C D +∞ 3 Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) B lim k = với k > n n C lim q = với |q| > D lim √ = n Câu 27 [3-1132d] Cho dãy số (un ) với un = Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a D A 2a B a C d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C D 3a Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A B a 57 C D 19 17 19 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 A B C D 29 29 29 29 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Trang 3/5 Mã đề Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a 2a a B C D A 9 9 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 16 26 Câu 41 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) D f (x)dx = F(x) + C Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) Câu 43 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) liên tục K D f (x) có giá trị nhỏ K D Cả hai sai Câu 44 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Z D Câu 45 Z Các khẳng định Z sau sai? A Z C k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) f (x)g(x)dx = B Z B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] Trang 4/5 Mã đề A B C D Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D (I) (II) Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C C C B A B A D 11 10 A 12 B 13 14 A C 15 D 16 A 17 C 18 19 C 20 A 21 D D 22 23 A 24 A 25 A 26 27 D D C B 28 C 29 C 30 C 31 C 32 C 33 B C 35 37 B 39 34 D 36 D 38 40 A C 41 B 42 43 B 44 45 D 47 49 B C B B 46 D 48 D 50 C B ... f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C C C B A B A D 11 10 A 12 B 13 14 A C 15 D 16 A 17 C 18 19 C 20 A 21... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D... cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Trang 3/5 Mã đề Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu