Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 1 2 B 2 C 1 D −1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + Câu Tính giới hạn lim x→+∞ x + 1 B A − 2n Câu [1] Tính lim bằng? 3n + A − B 3 x2 − Câu Tính lim x→3 x − A +∞ B −3 x−2 Câu Tính lim x→+∞ x + A B − x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 2n + Câu Tìm giới hạn lim n+1 A B C D −1 C D C D C −3 D C +∞ D C +∞ D C D C D +∞ Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) + g(x)] = a + b x→+∞ f (x) a D lim = x→+∞ g(x) b x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ √ x2 + 3x + x→−∞ 4x − 1 A B − C D 4 Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 10 Tính giới hạn lim Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 √ Câu 13 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B < m ≤ 4 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [0; 4] Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ 1 Trong khẳng định sau đây, khẳng định đúng? Câu 17 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x 2x ln 10 x ln 10 √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 62 C Vô số D 63 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 18 11 − 29 11 + 19 11 − 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 21 Phát biểu sau sai? A lim qn = với |q| > B lim un = c (Với un = c số) 1 C lim k = với k > D lim √ = n n n−1 Câu 22 Tính lim n +2 A B C D + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ Câu 25 Dãy số sau có giới hạn khác 0? sin n A B √ n n Câu 26 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B un = (n + 1) 5n + n2 ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C n C un = C D n2 − 3n n2 n+1 n D un = n2 − 5n − 3n2 D Trang 2/5 Mã đề 7n2 − 2n3 + 3n3 + 2n2 + B - + 22 + · · · + n2 [3-1133d] Tính lim n3 B Tính lim n+3 B Câu 28 Tính lim A Câu 29 A Câu 30 A C D C +∞ D C D d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 2a A 4a B Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ O đến (S√BC) √ 2a 57 a 57 a 57 A a 57 C D B 17 19 19 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C D A 2a 2 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a a 5a A B C D 9 9 Trang 3/5 Mã đề [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ 2a 57 a 57 a 57 C A B a 57 D 19 19 17 Câu 41 đề sau sai? Z [1233d-2] Mệnh Z k f (x)dx = k A Z B f (x)dx, với k ∈ R, f (x) liên tục R Z Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R C Câu 42 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx Câu 43 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , B f (x) có giá trị nhỏ K D f (x) xác định K Câu 44 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A dx = ln |x| + C, C số Z x D dx = x + C, C số B xα+1 + C, C số α+1 Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên Z C xα dx = hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (III) sai sai D Câu (II) sai Trang 4/5 Mã đề Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề D (II) (III) Câu 49 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 50 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C A B D D D 11 A C 10 B 12 B 14 B 15 A 16 A 17 A 18 19 B 22 23 C D 25 27 C 29 A B 33 C B 26 B 28 B 30 B 32 D 34 D 36 37 A 38 39 A 40 41 A 42 43 C 44 45 C 46 B C 24 35 A 47 D 20 A 21 A 31 C 13 C B C B C D 48 A 50 49 A D ... = f (x), ∀x ∈ (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C A B D D D 11 A C 10 B 12 B 14 B 15 A 16 A 17 A 18 19 B 22 23 C D... câu C Câu (III) sai sai D Câu (II) sai Trang 4/5 Mã đề Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II)... kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề D (II) (III) Câu 49 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx =