Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = ( −2 3 )n B un =[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số! có giới hạn 0? n −2 A un = B un = n2 − 4n !n C un = D un = Câu Dãy !n số sau có giới !n hạn 0? A − B 3 !n C e !n D C D C D C D C D C −∞ D C −∞ D C D x+2 bằng? x→2 x A B 2n + Câu Tính giới hạn lim 3n + A B 2 2n + Câu Tìm giới hạn lim n+1 A B x+1 Câu Tính lim x→−∞ 6x − 1 A B n3 − 3n n+1 Câu Tính lim x3 − Câu Tính lim x→1 x − A B +∞ 2n − Câu Tính lim 2n + 3n + A B +∞ √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − 4 − 2n Câu 10 [1] Tính lim bằng? 3n + 1 A B 2 D − q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [−1; 0] C Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e + C xy0 = ey + D xy0 = ey − Câu 12 [3-12217d] Cho hàm số y = ln A xy0 = −ey − √ Câu 13 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m ≥ D m < 4 4 √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 B [3; 4) C ;3 D (1; 2) A 2; 2 Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x x ln 10 2x ln 10 2x3 ln 10 Câu 19 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vơ nghiệm Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 21 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a , lim = ±∞ lim = ! un = −∞ C Nếu lim un = a < lim = > với n lim D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 22 Dãy số sau có giới hạn khác 0? sin n A B n n C n+1 n D √ n cos n + sin n n2 + B −∞ C D +∞ n−1 Câu 24 Tính lim n +2 A B C D ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 23 Tính lim A Trang 2/5 Mã đề Câu 27 Tính lim 2n2 − 3n6 + n4 Câu 28 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 A B 7n2 − 2n3 + Câu 29 Tính lim 3n + 2n2 + A B - 3 Câu 30 Tính lim n+3 A B C C un = D n2 − 5n − 3n2 D un = C D C D n2 + n + (n + 1)2 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 3a , hình chiếu vng Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 8a 5a B C D A 9 9 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 17 19 19 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 19 17 Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a D a A B C a Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) B dx = log |u(x)| + C u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 42 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z C dx = ln |x| + C, C số D dx = x + C, C số x Câu 43 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề D (II) (III) Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 46 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) có giá trị lớn K Trang 4/5 Mã đề Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D Cả ba câu sai Câu 49 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 50 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D 10 D D 11 D 12 13 D 14 15 17 D 18 19 A 20 A 21 A 22 24 C 25 A 26 27 A 28 29 31 D C 35 37 D 41 C B D B C 32 D 34 D 36 D 40 C B 42 A B 43 A 44 A 45 A 46 A 47 A 48 49 B 38 A B 39 C 30 B 33 B 16 B 23 D A A B 50 C C D ... (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D 10 D D 11 D 12 13 D 14 15 17 D 18 19 A 20 A 21 A 22 24 C 25 A... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề D (II) (III)... 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 21 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a , lim = ±∞ lim = ! un