1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (683)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,83 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 0 B 5 C 1 D[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B C D −1 Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B − sin 2x C −1 + sin 2x − 2n Câu [1] Tính lim bằng? 3n + 1 C A B 3 D + sin 2x D − Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = +∞ C lim+ f (x) = lim− f (x) = a x→a x→a Câu Tính lim A Câu Tính lim x→5 A +∞ 2n − + 3n + B +∞ 2n2 x2 − 12x + 35 25 − 5x B −∞ √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B 2n + Câu 10 Tính giới hạn lim 3n + A B x→a x→a D lim f (x) = f (a) x→a C D −∞ C − D C +∞ D C 1 D − C D Câu 11 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B ;3 C 2; D (1; 2) 2 √ ab Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < Câu 13 [1226d] Tìm tham số thực m để phương trình A m ≤ B m < ∨ m > Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ √ Câu 17 [12215d] Tìm m để phương trình x+ 1−x B ≤ m ≤ A < m ≤ 4 Câu 18 [1225d] Tìm tham số thực m để phương x≥1 A m > B m ≤ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực − 4.2 x+ 1−x2 C m < D m ≥ √ x − log3 x − 1) x − m = (m tham số thực) Có tất bao Câu 19 [1228d] Cho phương trình nhiêu giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 64 D 62 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 2] ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A B +∞ C D 3 ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D n−1 Câu 24 Tính lim n +2 A B C D cos n + sin n Câu 25 Tính lim n2 + A B C −∞ D +∞ un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D (2 log23 Câu 27 Phát biểu sau sai? A lim un = c (Với un = c số) B lim √ = n Trang 2/5 Mã đề C lim qn = với |q| > Câu 28 Dãy số sau có giới hạn khác 0? sin n n+1 A B n n D lim C = với k > nk n D √ n Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = = a , lim = ±∞ lim !vn un = a > lim = lim = +∞ ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C D a 2 0 0 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a A B C D a 2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 B C D A a 57 19 19 17 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a A B C D 29 29 29 29 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B A a C D a 3 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A D B C a [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 C D B A a 57 19 17 19 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu 42 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) B dx = log |u(x)| + C u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 43 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Trang 4/5 Mã đề Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K D B f (x) có giá trị nhỏ K D f (x) xác định K Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 49 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) B Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai sai C Chỉ có (I) D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D D A D D 10 11 13 C 14 15 C 16 A 17 C 18 19 D 20 21 D 22 23 B 24 25 B 26 A D D 35 C 39 D 41 C 43 47 49 C B D B C D B C 32 C 37 D 30 B 33 45 28 C 29 31 B 12 A B 27 C D B C D 34 C 36 C 38 C 40 B 42 B 44 B 46 B 48 B 50 A D ... Chỉ có (I) D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D D A D D 10 11 13 C 14 15 C 16 A 17 C 18 19 D 20 21 D 22 23 B 24 25... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu... lim √ = n Trang 2/5 Mã đề C lim qn = với |q| > Câu 28 Dãy số sau có giới hạn khác 0? sin n n+1 A B n n D lim C = với k > nk n D √ n Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu

Ngày đăng: 10/03/2023, 21:29

w