Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 1 2 B 2 C 1 D −1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2 Câu Giá trị lim (3x2 − 2x + 1) C D −1 C D +∞ C D x→1 A B 2n − Câu Tính lim 2n + 3n + A +∞ B −∞ Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D √ √ 4n2 + − n + Câu Tính lim 2n − 3 B +∞ C D A √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − C D 4 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B − sin 2x C + sin 2x D −1 + sin x cos x Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm x2 − 12x + 35 Câu 10 Tính lim x→5 25 − 5x A B +∞ C − D −∞ Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey + Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Trang 1/5 Mã đề Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " ! " nhỏ! biểu thức P = x + 2y thuộc tập đây? 5 B [3; 4) C (1; 2) D ;3 A 2; 2 Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 x−3 x−2 x−3 x−2 Câu 18 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B C D Vô nghiệm − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 11 − 19 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) Câu 21 Dãy số sau có giới hạn khác 0? 1 A B √ n n Câu 22 Tính lim C n+1 n D sin n n 2n2 − 3n6 + n4 A Câu 23 Tính lim n+3 A B C D B C D Câu 24 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 n2 + n + n2 − C un = D un = (n + 1)2 5n − 3n2 un Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ n−1 Câu 26 Tính lim n +2 A B C D Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề 1 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 2 + + ··· + n Câu 29 [3-1133d] Tính lim n3 A B C 3 cos n + sin n Câu 30 Tính lim n2 + A B C −∞ ! D D +∞ D +∞ [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ 2a 57 a 57 a 57 B C a 57 D A 17 19 19 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 3a C D 2a Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 a b2 + c2 b a2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Trang 3/5 Mã đề Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C D A 2a 2 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z xα+1 A dx = x + C, C số B xα dx = + C, C số α+1 Z Z dx = ln |x| + C, C số D 0dx = C, C số C x Câu 42 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 43 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx B f (x) có giá trị lớn K D f (x) xác định K Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai Trang 4/5 Mã đề B F(x) = G(x) khoảng (a; b) C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai D Chỉ có (I) Câu 50 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B B B D D A D 10 A C 11 12 A 13 A 15 C D 17 19 D 16 D 18 A B 21 14 20 A C 22 A 23 B 24 25 B 26 27 C 28 29 A B D B 30 A 31 B 32 33 B 34 35 A D B 36 A C 37 38 39 A B 40 C 41 B 42 43 B 44 C 46 C 48 C 45 C 47 49 D B 50 D B ... f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B B B D D A D 10 A C 11 12 A 13 A 15 C D 17 19 D 16 D 18 A B 21 14... ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Trang 3/5 Mã đề Câu 40 [2] Cho hai... = F(x) +C ⇒ f (u)dx = F(u) +C Câu 43 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx