Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A −∞ B +∞ C 1 D 0 Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n − 2n2 + 3n + A −∞ B +∞ 4x + bằng? Câu [1] Tính lim x→−∞ x + A B −1 2−n Câu Giá trị giới hạn lim n+1 A B x−2 Câu Tính lim x→+∞ x + A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B Câu !Dãy số sau có giới !n hạn 0? n A B e Câu Tính lim C D C D −4 C −1 D C −3 D − C D − !n C − !n D Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim = n x−3 bằng? Câu [1] Tính lim x→3 x + A B = nk D lim un = c (un = c số) B lim C +∞ D −∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C f (x) có giới hạn hữu hạn x → a x→a x→a D lim f (x) = f (a) x→a Câu 10 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = 2x ln 10 2x ln 10 x ln 10 D −1 + sin x cos x D y0 = − log 2x x3 Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m > C m ≥ D m < A m ≤ 4 4 Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề √ √ Câu 14 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B ≤ m ≤ C m ≥ D < m ≤ 4 x−3 x−2 x−3 x−2 Câu 15 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B C Vô nghiệm D 2 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vơ nghiệm D Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 − 19 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 21 Trong mệnh đề đây, mệnh đề sai? ! un = −∞ A Nếu lim un = a < lim = > với n lim ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 + + ··· + Câu 22 Tính lim 1.2 2.3 n(n + 1) A B C D Câu 23 Phát biểu sau sai? A lim qn = với |q| > 1 C lim √ = n = với k > nk D lim un = c (Với un = c số) B lim ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 12 + 22 + · · · + n2 Câu 25 [3-1133d] Tính lim n3 A +∞ B C D 3 Trang 2/5 Mã đề 7n2 − 2n3 + Câu 26 Tính lim 3n + 2n2 + A - B n−1 Câu 27 Tính lim n +2 A B Câu 28 Dãy số sau có giới hạn 0? n2 − − 2n A un = B un = 5n − 3n 5n + n2 Câu 29 Dãy số sau có giới hạn khác 0? n+1 A B n n D C D C C un = C n2 − 3n n2 sin n n Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D un = n2 + n + (n + 1)2 D √ n un D +∞ Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C a D A 2 0 0 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C 2a D A a 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 17 19 19 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Trang 3/5 Mã đề √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 a 38 3a 38 B C D A 29 29 29 29 0 0 Câu 39.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Chỉ có (II) D Cả hai sai Câu 43 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R C Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R A Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Trang 4/5 Mã đề Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z C dx = x + C, C số D dx = ln |x| + C, C số x Câu 46 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B Z Z D Câu 47 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Cả hai câu D Chỉ có (I) Câu 49 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 50 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A C D A D B B 10 A C 11 12 A 13 D 14 B 15 D 16 B 17 A 18 C 19 A 20 C 21 22 B 23 A 24 A 25 D 27 29 26 A C B 31 33 B C 28 B 30 B 32 B 34 B D 35 D 36 C 37 D 38 C 39 D 40 41 D 42 43 B D C 44 A 45 A 46 A 47 A 48 C 50 C 49 B ... Z D f (x)dx = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A C D A D B B 10 A C 11 12 A 13 D 14 B 15 D 16 B 17 A 18 C 19 A 20... cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C 2a D A a 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh... C Cả hai câu D Chỉ có (I) Câu 49 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k