1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (409)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,93 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A 0 B −∞ C 1 D +∞ C[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1] Tính lim x→3 A x−3 bằng? x+3 B −∞ x2 − 12x + 35 x→5 25 − 5x 2 A − B 5 − 2n Câu [1] Tính lim bằng? 3n + 2 B A − 3 C D +∞ C −∞ D +∞ Câu Tính lim Câu Tính lim x→3 A −3 x2 − x−3 B 2n + Câu Tính giới hạn lim 3n + A B 4x + bằng? Câu [1] Tính lim x→−∞ x + A B x+1 Câu Tính lim x→−∞ 6x − 1 A B C D C +∞ C D D C −4 C D −1 D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) C lim+ f (x) = lim− f (x) = a x→a x→a Câu Tính lim x→2 A x+2 bằng? x B x − 5x + x→2 x−2 B x→a D lim+ f (x) = lim− f (x) = +∞ x→a x→a C D C D −1 Câu 10 Tính giới hạn lim A Câu 11 [12214d] Với giá trị m phương trình A < m ≤ B < m ≤ 1 3|x−2| = m − có nghiệm C ≤ m ≤ D ≤ m ≤ Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Trang 1/5 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B 2; C ;3 D [3; 4) 2 √ ab Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x B y0 = C y0 = A y0 = 2x ln 10 x ln 10 2x3 ln 10 √ √ D y0 = − log 2x x3 Câu 19 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 Câu 20 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey − D xy0 = −ey + Câu 21 Dãy số sau có giới hạn khác 0? 1 B √ A n n C sin n n D n+1 n Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a , lim = ±∞ lim = = +∞ lim = a > lim(un ) = +∞ ! un = +∞ = a > lim = lim Câu 23 Phát biểu sau sai? A lim √ = n C lim k = với k > n B lim qn = với |q| > D lim un = c (Với un = c số) Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ ! 1 + + ··· + Câu 25 Tính lim 1.2 2.3 n(n + 1) A B Câu 26 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B un = (n + 1) 5n + n2 C C C un = un D D n2 − 3n n2 D un = n2 − 5n − 3n2 Trang 2/5 Mã đề 7n2 − 2n3 + 3n3 + 2n2 + B - cos n + sin n Tính lim n2 + B −∞ 2n − Tính lim 3n + n4 B n−1 Tính lim n +2 B Câu 27 Tính lim A Câu 28 A Câu 29 A Câu 30 A C D C D +∞ C D C D Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C a D 2a A Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C a D 2 0 0 Câu 33 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 2a C 3a D Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 3a Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) Trang 3/5 Mã đề √ 2a a a a A B C D 3 ◦ d Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC = 30 , biết S BC tam giác cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 42 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C C D Z Z f (x)dx, k số B f (x)dx = F(x) +C ⇒ !0 Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = f (x) f (u)dx = F(u) +C Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R A Câu 46 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Trang 4/5 Mã đề Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu sai Câu 48 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K C Cả hai câu D Chỉ có (I) B f (x) có giá trị lớn K D f (x) xác định K Câu 49 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 50 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B xα+1 + C, C số x dx = α+1 α Z D dx = x + C, C số dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D B 17 D 19 C 21 B B D 14 C 16 C 18 B 20 B 22 D B 25 27 12 A 13 23 D 10 C 11 A 15 B D C 24 C 26 B 28 A B 29 C 30 C 31 C 32 C 33 A 34 35 A 36 A D 37 39 A 41 B 43 A 45 47 D D 38 C 40 C 42 B 44 B 46 C 49 A D 48 C 50 C ... = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D B 17 D 19 C 21 B B D 14 C 16 C 18 B 20 B 22 D B 25 27 12 A 13... cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) Trang 3/5 Mã đề √ 2a a a a A B C D 3 ◦ d Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC = 30 , biết S BC tam giác cạnh a √ mặt bên (S... Câu 21 Dãy số sau có giới hạn khác 0? 1 B √ A n n C sin n n D n+1 n Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim

Ngày đăng: 10/03/2023, 21:28

w