1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (371)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,69 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 2 B 3 C 0 D 1 Câu 2 Tính[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+2 bằng? x B x+1 Câu Tính lim x→+∞ 4x + A B x+1 Câu Tính lim x→−∞ 6x − A B Câu Dãy !n số sau có giới !n hạn 0? A − B e Câu Tính lim x→2 A x3 − Câu Tính lim x→1 x − A B Câu Dãy số! có giới hạn 0? n n3 − 3n −2 B un = A un = n+1 2−n Câu Giá trị giới hạn lim n+1 A B Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) C D C D D C !n C !n D C −∞ D +∞ !n C un = D un = n2 − 4n C −1 D 1 = nk n D lim q = (|q| > 1) B lim x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B C −1 D Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 A B C D +∞ Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 4) D (2; 4; 6) Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x x x Câu 13 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C Vô nghiệm D Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Trang 1/5 Mã đề log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = 3 2x ln 10 x x ln 10 D y0 = 2x3 ln 10 Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m ≤ D m < − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 19 11 + 19 11 − 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey + C xy0 = ey − D xy0 = −ey + Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 Câu 21 Dãy số sau có giới hạn khác 0? n+1 B A n n Câu 22 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 Câu 23 Tính lim A n+3 B C sin n n C un = n2 − 5n − 3n2 C D √ n D un = − 2n 5n + n2 D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un B Nếu lim un = a > lim = lim = +∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ ! 3n + 2 Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 26 Tính lim n2 + A B C +∞ D −∞ ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 Trang 2/5 Mã đề Câu 28 Tính lim A n−1 n2 + B C D 12 + 22 + · · · + n2 n3 A +∞ B C D 3 + + ··· + n Câu 30 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 29 [3-1133d] Tính lim Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a C D B A a 6 d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a C a A a B D 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 3a C 4a D 2a Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) C dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 43 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) C Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 45 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D (I) (II) Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B 0dx = C, C số A Z x Z xα+1 xα dx = dx = x + C, C số C + C, C số D α+1 Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai sai C Câu (I) sai D Câu (II) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C D D A A C C 10 D 11 C D 14 C 16 C 18 17 A 19 C 20 D B 22 21 A 23 B 12 13 A 15 D B 24 25 A 26 A 27 A 28 A 29 B 30 31 B 32 D B B C 33 A 34 D 35 A 36 D 37 B 38 A 39 B 40 A 41 43 C 42 B 44 B D 45 D 46 B 47 D 48 B 49 50 A C ... (I) sai D Câu (II) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C D D A A C C 10 D 11 C D 14 C 16 C 18 17 A 19 C 20 D B 22 21 A 23 B... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D... n+3 B C sin n n C un = n2 − 5n − 3n2 C D √ n D un = − 2n 5n + n2 D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un B Nếu lim un = a > lim = lim = +∞

Ngày đăng: 10/03/2023, 21:26

w