Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A 0 B +∞ C 1 D −∞ C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x−3 Câu [1] Tính lim bằng? x→3 x + A B +∞ − 2n bằng? Câu [1] Tính lim 3n + 1 A B 3 Câu Giá trị lim (3x − 2x + 1) x→1 A B C D −∞ C − D C D +∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a = D lim [ f (x) + g(x)] = a + b C lim x→+∞ x→+∞ g(x) b x+1 Câu Tính lim x→−∞ 6x − 1 B C D A 1−n Câu [1] Tính lim bằng? 2n + 1 1 A B C − D 2 2n + Câu Tính giới hạn lim 3n + C D A B 2 x−2 Câu Tính lim x→+∞ x + D A −3 B C − Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b x+1 x→+∞ 4x + 1 A B C D 3 Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 10 Tính lim Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e − C xy0 = −ey − D xy0 = ey + log 2x Câu 14 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x x ln 10 2x ln 10 2x3 ln 10 q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 13 [3-12217d] Cho hàm số y = ln Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (2; 4; 4) D (1; 3; 2) Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ log(mx) = có nghiệm thực Câu 19 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m ≤ C m < ∨ m = D m < Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 ;3 C 2; D (1; 2) A [3; 4) B 2 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = 2 7n − 2n + Câu 22 Tính lim 3n + 2n2 + A B C D - 3 n−1 Câu 23 Tính lim n +2 A B C D Câu 24 Dãy số sau có giới hạn 0? n2 + n + n2 − 3n A un = B u = n (n + 1)2 n2 C un = n2 − 5n − 3n2 D un = √ ab − 2n 5n + n2 Câu 25 Phát biểu sau sai? = với k > nk C lim un = c (Với un = c số) D lim √ = n ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 A lim qn = với |q| > B lim Trang 2/5 Mã đề ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 + + ··· + Câu 28 Tính lim 1.2 2.3 n(n + 1) A B C D cos n + sin n Câu 29 Tính lim n2 + A B +∞ C −∞ D Câu 30 Dãy số sau có giới hạn khác 0? n+1 A √ B n n C sin n n D n Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ D √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A 2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B C D A a 6 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C D a 2 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 3a Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C D a A 2 Câu 41 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C Câu 42 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Câu (III) sai D Khơng có câu sai Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = x + C, C số α+1 Z Z C dx = ln |x| + C, C số D 0dx = C, C số x Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III) D (II) (III) Câu 47 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 48 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 49 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 50 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C 13 D B C C C D C 12 B 14 B 16 B 18 17 A 19 20 C 21 D 23 C 25 A 27 C 29 A 31 10 C 15 C B 11 C B 22 D 24 D 26 B 28 B 30 B 32 A B 33 A 34 B 35 B 36 B 37 B 38 B 39 D 40 C 42 D 43 A 44 D 45 A 46 A 47 A 48 A 41 49 B D 50 A ... Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III)... g(x))dx = f (x)dx + g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C 13 D B C C C D C 12 B 14 B 16 B 18 17 A 19 20 C 21 D 23 C 25 A 27... k ∈ R, f (x) liên tục R C Câu 50 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C