Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→+∞ x + 1 4x + 3 bằng A 3 B 1 C 1 4 D 1 3 Câ[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 x→+∞ 4x + B Câu Tính lim A 2−n Câu Giá trị giới hạn lim n+1 A B 2 x − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B +∞ C D C D −1 D − C x−2 Câu Tính lim x→+∞ x + A − B C −3 D Câu Phát biểu sau sai? A lim qn = (|q| > 1) B lim un = c (un = c số) 1 C lim = D lim k = n n 2n + Câu Tìm giới hạn lim n+1 A B C D x−3 bằng? Câu [1] Tính lim x→3 x + A B −∞ C D +∞ 1−n Câu [1] Tính lim bằng? 2n + 1 1 A B − C D 2 2x + Câu Tính giới hạn lim x→+∞ x + 1 B C D −1 A Câu 10 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin x cos x C − sin 2x D −1 + sin 2x log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < C m < ∨ m = D m < ∨ m > Câu 12 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = −ey − C xy0 = −ey + D xy0 = ey − Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 4) D (2; 4; 6) Trang 1/5 Mã đề Câu 15 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 16 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D − xy Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 √ Câu 18 [12215d] Tìm m để phương trình x+ 1−x A m ≥ B < m ≤ Câu 19 [1225d] Tìm tham số thực m để phương x≥1 A m < B m ≤ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 x x trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực − 4.2 x+ 1−x2 C m ≥ D m > x + log3 x + m = có nghiệm Câu 20 [1224d] Tìm tham số thực m để phương trình 1 1 B m ≥ C m < D m > A m ≤ 4 4 Câu 21 Tính lim n+3 A B C D ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 3 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C D - 3 ! 1 Câu 24 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 Câu 25 Dãy số sau có giới hạn khác 0? sin n n+1 1 A B C D √ n n n n log23 Câu 26 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C un = 12 + 22 + · · · + n2 n3 A B C +∞ Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 27 [3-1133d] Tính lim D Trang 2/5 Mã đề ! un B Nếu lim un = a , lim = ±∞ lim = C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim n−1 Câu 29 Tính lim n +2 A B C D un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a 2a a A a C D B Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 3 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 17 19 19 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 17 19 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a 2 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a B C D A 3 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K B f (x) xác định K C f (x) liên tục K D f (x) có giá trị nhỏ K Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh a, S D = Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Chỉ có (II) D Cả hai câu sai Câu 43 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z B f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Câu 44 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Trang 4/5 Mã đề B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (II) sai C Khơng có câu D Câu (I) sai sai Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D A C C B 10 D 12 D 13 A 14 D 15 A 16 B 11 C D 17 19 20 A 21 A 25 D B 27 D 18 C 23 C D 22 C 24 C 26 C 28 A 29 A 30 31 C 32 C B 33 B 34 D 35 B 36 D 37 A 38 A 39 C 40 B 41 C 42 B 43 A 44 45 A 46 47 C 48 49 C 50 D B D C ... ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D A C C B 10 D 12 D 13 A 14 D 15 A 16 B 11 C D 17 19 20 A 21 A 25... C +∞ Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 27 [3-1133d] Tính lim D Trang 2/5 Mã đề ! un B Nếu lim un = a... g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Trang 4/5 Mã đề B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b)