Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A 2 5 B −∞ C − 2 5[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→5 A x2 − 12x + 35 25 − 5x B −∞ √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B x+1 Câu Tính lim x→−∞ 6x − B A 2n + Câu Tính giới hạn lim 3n + B A 2 x − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 C − D +∞ C 1 D − D C D C D C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C + sin 2x D −1 + sin 2x Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm 4x + bằng? x→−∞ x + A −4 B − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 Câu 10 Phát biểu sau sai? Câu [1] Tính lim C C D −1 D 1 = n D lim un = c (un = c số) q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [0; 2] A lim qn = (|q| > 1) C lim k = n B lim Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Trang 1/5 Mã đề Câu 13 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 13 D 2020 √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 15 [12215d] Tìm m để phương trình x+ 3 A ≤ m ≤ B < m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m ≥ D m < Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số log(mx) = có nghiệm thực Câu 20 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m ≤ D m < ∨ m = Câu 21 Tính lim 7n2 − 2n3 + 3n3 + 2n2 + B C - D + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ A Câu 25 Tính lim A 2n2 − 3n6 + n4 B Câu 26 Dãy số sau có giới hạn khác 0? sin n A B n n C C n+1 n D D √ n Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn 0? − 2n n2 + n + B un = A un = (n + 1) 5n + n2 12 + 22 + · · · + n2 n3 B C un = n2 − 5n − 3n2 D un = n2 − 3n n2 Câu 28 [3-1133d] Tính lim A +∞ Câu 29 Tính lim A n−1 n2 + B C D C D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B a C A a D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ D √ B √ A 2 2 2 a +b a +b a +b a2 + b2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 B C D A a 57 17 19 19 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 2a 5a A B C D 9 9 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a B C D A 3 ◦ d = 30 , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 16 26 Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = f (x)dx = A Nếu Z Z g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 47 ! định sau sai? Z Các khẳng A Z C f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 49 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 50 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D D B B B 10 A 11 A 12 A D 13 14 A 15 A 17 B B 16 C 18 C 19 C 20 21 C 22 D B 23 A 24 C 25 A 26 C 28 C 27 B 29 D 30 31 D 32 33 A D 35 37 C C 36 C 38 A B 40 A 41 B 42 D 45 B 34 39 43 D B 44 C D 46 C 47 B 48 C 49 B 50 C ... (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D D B B B 10 A 11 A 12 A D 13 14 A 15 A 17 B B 16 C 18 C 19 C 20... g(x)dx, với f (x), g(x) liên tục R B Câu 49 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx... tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 2a 5a A B C D 9 9 Trang 3/5 Mã đề 3a , hình