Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B −1 C 1 D 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + x→+∞ x + B −1 Câu Tính giới hạn lim A C D C −∞ D +∞ Câu !Dãy số sau có giới !n hạn 0? n A B e !n C !n D − Câu Dãy số có giới hạn 0? ! n −2 A un = n − 4n B un = !n C un = D un = 2−n Câu Giá trị giới hạn lim n+1 A B C D −1 Câu Tính lim x→1 A x3 − x−1 B n3 − 3n n+1 Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C − 2n Câu [1] Tính lim bằng? 3n + A B C 3 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm − n2 bằng? 2n2 + 1 A B − 2 x − 5x + Câu 10 Tính giới hạn lim x→2 x−2 A B −1 D D − Câu [1] Tính lim C C D D Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Trong khẳng định sau đây, khẳng định đúng? Câu 12 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e + B xy = −e − C xy0 = −ey + D xy0 = ey − log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x x ln 10 2x ln 10 2x3 ln 10 Trang 1/5 Mã đề Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 Câu 17 [12214d] Với giá trị m phương trình A < m ≤ B < m ≤ 3|x−2| = m − có nghiệm C ≤ m ≤ D ≤ m ≤ √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 64 C 62 D 63 √ Câu 19 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 √ − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B 2; C ;3 D (1; 2) 2 Câu 21 Tính lim A n+3 B √ ab C D ! 3n + 2 Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 23 Tính lim n2 + A −∞ B C +∞ D Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ B Nếu lim un = a > lim = lim ! un C Nếu lim un = a , lim = ±∞ lim = ! un D Nếu lim un = a < lim = > với n lim = −∞ un Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ Câu 26 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B u = n 5n − 3n2 (n + 1)2 C un = − 2n 5n + n2 D un = n2 − 3n n2 Trang 2/5 Mã đề Câu 27 Phát biểu sau sai? B lim √ = n A lim qn = với |q| > C lim = với k > nk D lim un = c (Với un = c số) 12 + 22 + · · · + n2 n3 A +∞ B C Câu 29 Trong khẳng định có khẳng định đúng? Câu 28 [3-1133d] Tính lim D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 30 Tính lim A B 1 + + ··· + 1.2 2.3 n(n + 1) B C D ! C D d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 5a 2a A B C D 9 9 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 43 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) +C ⇒ Z B Z f (u)dx = F(u) +C D Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 44 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị nhỏ K Trang 4/5 Mã đề Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu Câu 47 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B B B D A D 10 B D 11 13 B D 12 B 14 A 15 17 D 16 D B D 18 C C 19 C 20 21 C 22 B 24 B 23 B 25 C 26 27 A 28 C B 29 D 30 D 31 D 32 D 33 C 35 34 D 37 A 39 B 36 C 38 C 40 A 41 C 42 43 C 44 A 45 C 46 47 B B 48 50 49 A C D C D ... (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B B B D A D 10 B D 11 13 B D 12 B 14 A 15 17 D 16 D B D 18 C C 19 C 20... Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √... phần tử n+2 S A B C D cos n + sin n Câu 23 Tính lim n2 + A −∞ B C +∞ D Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ B Nếu lim un = a > lim = lim